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Upprifjun: Rifjum upp Cauchy-formúluna fyrir einfalt skaut:∫
∂Ω

f(z)
z − a

dz = 2πif(a), ef a ∈ Ω er einfalt skaut.

Ef f er fágað á öllu Ω (með engin skaut) þá gildir einfaldlega að:∫
∂Ω

f(z)dz = 0, ef f ∈ O(Ω)

Hinsvegar, ef að við erum að tegra yfir fall með margfalt skaut í a ∈ Ω þá fáum við:∫
∂Ω

f(z)
(z − a)2 dz = 2πf ′(a), ef a ∈ Ω er tvöfalt skaut.

Almennt gildir að n-falt skaut má reikna með:∫
∂Ω

f(z)
(z − a)n

dz = 2πi
f (n−1)(a)
(n − 1)! , ef a ∈ Ω er n-falt skaut.

Dæmi 3.11.1. Skoðum einfaldasta sýnidæmið. Látum f(z) = 1 og reiknið:∫
∂S(a,r)

f(z)
(z − a)n

dz =
∫

∂S(a,r)

1
(z − a)n

dz, fyrir öll n ∈ Z.

Athugið að rithátturinn ∂S(a, r) þýðir hringur með miðju í a og geisla r.

Lausn: Ef n ≤ 0 þá er k = −n ≥ 0 og þá erum við að tegra:∫
∂S(a,r)

(z − a)kdz = 0

samkvæmt Cauchy-setningunni því það er ekkert skaut og f(z) = (z − a)k er fágað á S(a, r). Ef n = −1 þá
fæst samkvæmt Cauchy-formúlunni: ∫

∂S(a,r)

1
(z − a) = 2πi

Hinsvegar ef n ≥ 2 þá er (n − 1) afleiðan f (n−1)(z) = 0 þ.a. við fáum samkvæmt Cauchy-formúlunni að:∫
∂S(a,r)

1
(z − a)n

= 2πi
f (n−1)(a)
(n − 1)! = 0.
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Ef að maður er ekki sáttur við þessa útleiðslu þá getum við líka stikað vegin með
z = γ(θ) = a + reiθ, og þá dz = ireiθdθ

þannig að við fáum:∫
∂S(a,r)

dz

(z − a)n
=
∫ 2π

0
dθ

ireiθ

(reiθ)n
= i

rn−1

∫ 2π

0
dθei(1−n)θ = i

rn−1

[
1

i(1 − n)ei(1−n)θ

]2π

0
= 0.

Dæmi 3.11.2. Reiknið vegheildin
∫

γ
f(z)dz þar sem

(a) f(z) = z̄ og γ er hluti af hring með miðju í 1 og þegar farið er eftir hringboganum breytist hornið
frá − π

2 til π
2 .

(b) f(z) = z2 og γ er vegur sem stikar beina línu frá 0 til 1 og þaðan hringboga með miðju í 1 + i
stystu leið í 2 + i.

Lausn:
(a) Athugum fyrst að við höfum ekkert stofnfall fyrir f(z) = z svo við neyðumst til þess að stika veginn.

Teiknum upp mynd:

Látum því:
z = γ(θ) = a + reiθ, dz = ireiθdθ

Athugum að þá er z = (a + reiθ) = a + re−iθ = 1 + re−iθ. Því fæst að:∫
γ

f(z)dz =

π
2∫

− π
2

dθireiθ
(
1 + re−iθ

)
= ir

π
2∫

− π
2

dθ
(
eiθ + r

)
= ir

[
1
i
eiθ + rθ

]π
2

− π
2

= 2ir + iπr2.

(b) Fallið f(z) = z2 er heilt fágað fall og á sér stofnfall á C sem er gefið með F (z) = 1
3 z3. Því er nóg að

meta F í endapunktunum:∫
γ

f(z)dz = F (2 + i) − F (0) = 1
3(2 + i)3 = 2

3 + i
11
3 .

Af varfærni er líka hægt að stika veginn og reikna vegheildið eftir γ = γ1 +γ2. Teiknum því upp mynd:
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Höfum þá að: ∫
γ

f(z)dz =
∫

γ1

f(z)dz +
∫

γ2

f(z)dz

Getum reiknað fyrra heildið með því að stika z1 = γ1(t) = t fyrir t ∈ [0, 1] þ.a. dz = dt og því fæst:∫
γ1

f(z)dz =
∫ 1

0
t2dt =

[
1
3 t3
]1

0
= 1

3 .

Getum reiknað seinna heildið með því að stika z2 = γ2(t) = (1 + i) + eiθ þar sem θ ∈ [− π
2 , 0] og dz = ieiθdθ.

Því fæst: ∫
γ2

f(z)dz =
0∫

− π
2

ieiθdθ
(
1 + i + eiθ

)2 = i

0∫
− π

2

dθ
(
2ieiθ + 2(1 + i)e2iθ + e3iθ

)

= i

[
2eiθ + 1 + i

i
e2iθ + 1

3i
e3iθ

]0

− π
2

= i

((
2 − i + 1 + − i

3

)
−
(

−2i − (−i + 1) + 1
3

))
= 1

3 + 11
3 i.

Við ályktum því að: ∫
γ

f(z)dz =
∫

γ1

f(z)dz +
∫

γ2

f(z)dz = 2
3 + 11

3 i.

Dæmi 3.11.3. Látum α = a + ib. Heildið
∫ t

0 eαtdτ og takið raunhlutann af útkomunni til að sýna að:
t∫

0

eaτ cos(bτ)dτ = eat (a cos(bt) + b sin(bt)) − a

a2 + b2

Hvaða heildi fæst ef að þverhlutinn er tekinn?

Lausn: Athugum fyrst að: ∫ t

0
eατ dτ =

[
1
α

eαt

]t

0
= 1

α

(
eαt − 1

)
Við ætlum einfaldlega að taka raunhlutann af báðum hliðum jöfnunnar. Vinstri hliðina má umrita með því
að athuga að:

eατ = e(a+ib)τ = eaτ eibτ = eaτ (cos(bτ) + i sin(bτ)) = eaτ cos(bτ)︸ ︷︷ ︸
Re eατ

+i eaτ sin(bτ)︸ ︷︷ ︸
Im eατ

.

Þar með er: ∫ t

0
eατ dτ =

∫ t

0
eaτ cos(bτ)dt︸ ︷︷ ︸

Re
(∫ t

0
eατ dτ

) +i

∫ t

0
eaτ sin(bτ)dt︸ ︷︷ ︸

Im
(∫ t

0
eατ dτ

)
Við getum líka umritað hægri hlið jöfnunnar:

1
α

(
eαt − 1

)
= 1

a + ib

(
eαt − 1

)
= a − ib

a2 + b2

(
eat cos(bt) + ieat sin(bt) − 1

)
= 1

a2 + b2

(
aeat cos(bt) + beat sin(bt) − a

)
︸ ︷︷ ︸

Re
(

1
α

(
eαt − 1

)) +i
1

a2 + b2

(
aeat sin(bt) − beat cos(bt) + b

)
︸ ︷︷ ︸

Im
(

1
α

(
eαt − 1

))
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Með því að bera saman raunhluta og þverhluta þá ályktum við að:

Re
(∫ t

0
eατ dτ

)
=

t∫
0

eaτ cos(bτ)dτ = eat (a cos(bt) + b sin(bt)) − a

a2 + b2 = Re
(

1
α

(
eαt − 1

))
,

Im
(∫ t

0
eατ dτ

)
=

t∫
0

eaτ sin(bτ)dτ = eat (a sin(bt) − b cos(bt)) + b

a2 + b2 = Im
(

1
α

(
eαt − 1

))
.

Dæmi 3.11.4. Sýnið að ef a, b ∈ R þá gildir að:∫
cosh(ax) cos(bx)dx = b cosh(ax) sin(bx) + a sinh(ax) cos(bx)

a2 + b2 + C,∫
sinh(ax) sin(bx)dx = a cosh(ax) sin(bx) − b sinh(ax) cos(bx)

a2 + b2 + C,

Lausn: Við notum niðurstöðuna úr dæmi 3.11.3 á undan. Athugum að:

sinh(ax) = eax − e−ax

2 , cosh(ax) = eax + e−ax

2 .

Við getum líka snúið þessu við með því að leggja jöfnurnar saman. Þannig fæst að:

eax = sinh(ax) + cosh(ax), e−ax = cosh(ax) − sinh(ax)

Við höfum þá að (hunsum fastann C í öllum reikningunum og bætum honum við í lokin):∫
cosh(ax) cos(bx)dx = 1

2

∫
eax cos(bx)dx + 1

2

∫
e−ax cos(bx)dx

= 1
2

(
eax (a cos(bx) + b sin(bx)) − a

a2 + b2 + e−ax (−a cos(bx) + b sin(bx)) + a

a2 + b2

)
= 1

2
1

a2 + b2

((
cosh(ax) + sinh(ax)

)(
a cos(bx) + b sin(bx)

)

+
(

cosh(ax) − sinh(ax)
)(

− a cos(bx) + b sin(bx)
))

= 1
a2 + b2 (b cosh(ax) sin(bx) + a sinh(ax) cos(bx)) .

Hitt fæst sambærilega með því að nota þverhlutann.
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Dæmi 3.11.5. Reiknið eftirfarandi heildi

(a)
∫

∂S(0,2)

ez2 cos z

z − i
dz, (b)

∫
∂S(1,2)

z

z2 − 5z + 4dz, (c)
∫

∂S(i, 1
2 )

Log z

(z − i)2 dz, (d)
∫

∂S(0,2)

z2 + z + 1
z2 − 1 dz.

Lausn:

(a) Teiknum upp mynd:

Fallið hefur einfalt skaut í z = i þ.a. Cauchy-formúlan fyrir einfalt skaut gefur með f(z) = ez2 cos z∫
∂S(0,2)

ez2 cos z

z − i
dz = 2πif(i) = 2πi

(
e(i)2

cos(i)
)

= 2πie−1

(
ei2 + e−i2

2

)
= πi

(
1 + 1

e2

)
.

(b) Teiknum upp mynd:

Við skulum fyrst athuga að með því að þátta nefnarann fæst:∫
∂S(1,2)

z

z2 − 5z + 4dz =
∫

∂S(1,2)

z

(z − 1)(z − 4)dz

En þar með er z = 1 eina skautið sem liggur innan í Ω = S(1, 2). Látum því f(z) = z
z−4 ∈ O(Ω) þ.a.∫

∂S(1,2)

z

z2 − 5z + 4dz = 2πf(1) = 2πi
1

1 − 4 = −2πi

3 .
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(c) Teiknum upp mynd:

Höfum tvöfalt skaut í z = i þ.a. þar sem f(z) = Log z þá athugum við að f ′(z) = 1
z og því fæst að:∫

∂S(i, 1
2 )

Log z

(z − i)2 dz = 2πi
f ′(i)

1! = 2πif ′(i) = 2πi

(
1
i

)
= 2π.

(d) Teiknum upp mynd:

Höfum tvö skaut inni í Ω = S(0, 2) í z = ±1 þannig að við fáum:∫
δS(0,2)

z2 + z + 1
z2 − 1 dz =

∫
δS(0,2)

z2 + z + 1
(z − 1)(z + 1)dz = 2πi (f(1) + g(−1)) = 2πi

(
3
2 − 1

2

)
= 2πi.

þar sem að:
f(z) = z2 + z + 1

z + 1 , þ.a. f(1) = 12 + 1 + 1
1 + 1 = 3

2 ,

g(z) = z2 + z + 1
z − 1 , þ.a. g(−1) = (−1)2 − 1 + 1

−1 − 1 = −1
2 .
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Dæmi 3.11.6. Látum γ = ∂S(0, R) tákna hringinn með miðju í 0 og geisla R. Sýnið að:

(a)
∫

∂S(0,R)

∣∣∣∣eiz

z

∣∣∣∣|dz| ≤ 2πeR, (b)
∫

∂S(0,R)

∣∣∣∣ sinh(z)
z2

∣∣∣∣|dz| ≤ 2π cosh R

R

Lausn:

(a) Við athugum að:

∫
γ

∣∣∣∣eiz

z

∣∣∣∣|dz| ≤ L(γ) · max
z∈γ

∣∣∣∣eiz

z

∣∣∣∣ ≤ 2πR
max
z∈γ

∣∣eiz
∣∣

min
z∈γ

|z|
= 2πR

max
z∈γ

(
e− Im z

)
R

= 2πeR.

Því fallið e− Im(z) tekur hágildið sitt í z = −iR ∈ γ og um alla punkta z ∈ γ gildir að |z| =
∣∣Reiθ

∣∣ = R.

Við getum auðveldlega metið þetta tegur með Cauchy-formúlunni fyrir einfalt skaut í z = 0 fyrir
f(z) = eiz sem hefur f(0) = e0 = 1. Fáum því að:∫

γ

eiz

z
dz = 2πif(0) = 2πi.

(b) Með sama hætti athugum við að:∫
γ

∣∣∣∣ sinh(z)
z2

∣∣∣∣|dz| ≤ L(γ) max
z∈γ

∣∣∣∣ sinh(z)
z2

∣∣∣∣ ≤ 2πR
max
z∈γ

|sinh(z)|

min
z∈γ

|z|2
≤ 2π

R
max
z∈γ

∣∣∣∣ez − e−z

2

∣∣∣∣
Þar sem í síðasta skrefinu notuðum við að |z| = R fyrir öll z ∈ γ ásamt því að nota skilgreininguna á
sinh(z). Með því að nota þríhyrningsójöfnuna fáum við því að:

2π

R
max
z∈γ

∣∣∣∣ez − e−iz

2

∣∣∣∣ ≤ 2π

R
max
z∈γ

|ez| + |e−z|
2 = 2π

R
max
z∈γ

eRe z + e− Re z

2 = 2π

R
max
z∈γ

cosh(Re(z)) = 2π

R
cosh(R).

Við getum líka metið þetta tegur með Cauchy-formúlunni fyrir tvöfalt skaut í z = 0 fyrir f(z) = sinh(z)
með f ′(z) = cosh(z) og f ′(0) = 1 þannig að:∫

γ

sinh(z)
z2 dz = 2πif ′(0) = 2πi.

Dæmi 3.11.7. Látum f vera samfellt í grennd um α ∈ C sem uppfyllir:

lim
z→α

(z − α)f(z) = A

Látum γr tákna hringbogann γr(t) = α + reit fyrir t ∈ [a, b]. Sýnið að:

lim
r→0

∫
γr

f(z)dz = iA(b − a).

Lausn: Látum z = γr(t) = α + reit þ.a. dz = ireitdt. Þar með höfum við að:

lim
r→0

∫ b

a

f(α + reit)ireitdt = i

∫ b

a

(
lim
r→0

reitf(α + reit)
)

dt

= i

∫ b

a

(
lim
z→α

(z − α)f(z)
)

dt

= i

∫ b

a

Adt = iA(b − a).
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Dæmi 3.11.8. Beitið Cauchy-formúlunni til að reikna:

(a)
π∫

−π

dθ

1 + a2 − 2a cos θ
, fyrir − 1 < a < 1, (b)

π∫
−π

sin2 θ

5 + 4 sin θ
dθ

Lausn: Í báðum þessum dæmum erum við að heilda yfir hring svo það er tilvalið að beita Cauchy-formúlunni.
Til þess athugum við að ef við stikum hringinn með z = eiθ þá er dz = ieiθdθ = izdθ. Þar að auki er:

sin θ = eiθ − e−iθ

2i
=

z − 1
z

2i
= z2 − 1

2zi
,

cos θ = eiθ + e−iθ

2 =
z + 1

z

2 = z2 + 1
2z

.

(a) Fáum þar með að:

π∫
−π

dθ

1 + a2 − 2a cos θ
=

∫
∂S(0,1)

dz
iz

1 + a2 − 2a
(

z2+1
2z

) = 1
i

∫
∂S(0,1)

dz

(1 + a2)z − a (z2 + 1) = i

a

∫
∂S(0,1)

dz

z2 − ( 1
a + a)z + 1

.

Athugum að ræturnar eru í:

w =
1
a + a ±

√
( 1

a + a)2 − 4
2 = 1

2

((
1
a

+ a

)
±
(

1
a

− a

))
=
{

1
a

a

En þar sem −1 < a < 1 þá liggur w = 1
a fyrir utan einingarhringinn. Því fæst samkvæmt Cauchy-

formúlunni að:
π∫

−π

dθ

1 + a2 − 2a cos θ
= i

a

∫
∂S(0,1)

dz

(z − a)(z − 1
a )

= i

a
· 2πif(a) = −2π

a

1
a − 1

a

= 2π

1 − a2 .

(b) Fáum þá að:

π∫
−π

sin2 θ

5 + 4 sin θ
dθ =

∫
∂S(0,1)

(
z2−1
2zi

)2

5 + 4
(

z2−1
2zi

) dz

iz
= −1

2

∫
∂S(0,1)

(z2 − 1)2

z2 (10iz + 4z2 − 4)dz = −1
8

∫
∂S(0,1)

(z2 − 1)2

z2 (z + 2i) (z + 1
2 i)

Höfum þar með tvöfalt skaut í z = 0 og einfalt skaut í z = − 1
2 i. Því verður:

π∫
−π

sin2 θ

5 + 4 sin θ
dθ = −1

8 · 2πi

(
f ′(0) + g(−1

2 i)
)

= −πi

4

(
−5

2 i + 25i

6

)
= 5π

12 .

þar sem að:

g(z) = (z2 − 1)2

z2(z + 2i) , þannig að g(−1
2 i) =

((
− i

2
)2 − 1

)2

(
− i

2
)2 (− i

2 + 2i
) =

25
16

− 1
4 · 3i

2
= 25i

6 .

f(z) = (z2 − 1)2

(z + 2i)(z + 1
2 i)

= (z2 − 1)2

z2 + 5
2 iz − 1

,
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En við þurfum að meta afleiðuna:

f ′(z) =
2(z2 − 1)2z

(
z2 + 5

2 iz − 1
)

− (2z + 5
2 i)(z2 − 1)2

(z + 2i)2(z + 1
2 i)2 , þ.a. f ′(0) =

0 − 5
2 i

(−4)(− 1
4 )

= −5
2 i.

Það er líka til einfaldari leið til þess að reikna svona afleiður. Athugum að:

ln(f(z)) = 2 ln
(
z2 − 1

)
− ln(z + 2i) − ln

(
z + 1

2 i

)
Diffrum báðar hliðar:

f ′(z)
f(z) = 4z

z2 − 1 − 1
z + 2i

− 1
z + 1

2 i

Færum síðan yfir og fáum:

f ′(z) = f(z)
(

4z

z2 − 1 − 1
z + 2i

− 1
z + 1

2 i

)
Athugum að f(0) = −1 þannig að við fáum auðveldlega að:

f ′(0) = −1
(

0 − 1
2i

− 2
i

)
= −5

2 i.
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Dæmi 3.11.11. Látum f ∈ O(C) þ.a. |f(z)| ≤ A + B|z|C þar sem A, B, C ≥ 0. Sýnið að f sé margliða af stigi ≤ C.

Lausn: Þar sem að f ∈ O(C) má rita það sem veldaröð (t.d. með miðju í 0) sem er þá gefin með:

f(z) =
+∞∑
k=0

akzk

En stuðlar veldaraðarinnar ákvarðast ótvírætt af afleiðum fallsins f í miðpunkti veldaraðarinnar. Nefnilega:

f (n)(z) =
+∞∑
k=n

akk!zk =⇒ f (n)(0) = ann! =⇒ an = f (n)(0)
n! .

Því einunigs fyrsti liðurinn lifir af þegar við metum í miðpunkti veldaraðarinnar í z = 0. En við getum þar
með borið þetta saman við Cauchy-formúluna fyrir afleiður:

an = f (n)(0)
n! = 1

2πi

∫
∂Ω

f(ξ)
ξn+1 dξ.

Verkefnið er því jafngilt því að sýna að |an| = 0 fyrir öll n > ⌊C⌋. Látum því γ tákna hring með geisla r og
miðju í 0 til þess að stika ferilinn okkar og fáum:

|an| ≤ 1
2π

L(γ) max
ξ∈γ

∣∣∣∣ f(ξ)
ξn+1

∣∣∣∣ ≤ 1
rn

max
ξ∈γ

∣∣∣A + B|ξ|C
∣∣∣ ≤ 1

rn

(
A + BrC

)
= A

rn
+ B

rn−C
−−−→
r→∞

0

Ef n > C. Þar með er síðasti liður veldaraðarinnar a⌊C⌋ og þar með er f margliða af stigi ⌊C⌋ ≤ C.

Dæmi 3.11.12. Látum f ∈ O(C) vera fall sem uppfyllir |f(z)| ≤ Mec|z|, fyrir öll z ∈ C. Sýnið að |f ′(z)| ≤ ceMec|z|.

Lausn: Látum γ(t) = z + reit stika ∂S(z, r). Fáum samkvæmt Cauchy-formúlunni fyrir afleiður að:

|f ′(z)| =

∣∣∣∣∣∣∣
1

2πi

∫
∂S(z,r)

f(ξ)
(ξ − z)2

∣∣∣∣∣∣∣ ≤ 1
2π

∫
∂S(z,r)

∣∣∣∣ f(ξ)
(ξ − z)2

∣∣∣∣|dξ| ≤ 1
2π

· 2πr max
ξ∈γ

∣∣∣∣ f(ξ)
(ξ − z)2

∣∣∣∣ = r

max
ξ∈γ

|f(ξ)|

min
ξ∈γ

|(ξ − z)2|

En með þessari stikun fæst því að ξ − z = reiθ og því er
∣∣(ξ − z)2

∣∣ = r2 fyrir öll z ∈ γ (og þar með lággildi).
Notum síðan fyrir efri hlutann forsenduna sem var gefin í dæminu |f(ξ)| ≤ Mec|ξ| og höfum þar með sýnt:

|f ′(z)| ≤ r

max
ξ∈γ

∣∣Mec|ξ|
∣∣

r2 = M

r
max

θ∈[0,2π]
ec|z+reiθ| ≤ M

r
max

θ∈[0,2π]
ec|z|+c|reiθ| = M

r
ec|z|ecr

þessi niðurstaða gildir fyrir alla geisla r > 0. Besta matið fæst því með því að lágmarka stærðina með tilliti
til r. Þannig við athugum að ef

h(r) = 1
r

ecr, þá er afleiðan h′(r) = − 1
r2 ecr + c

r
ecr = 0 =⇒ r = 1

c

Þannig að r = 1
c mun gefa okkur besta (minnsta) matið. En þar er eimitt:

|f ′(z)| ≤ ceMec|z|.

Dæmi 3.11.13. Látum f ∈ O(C) vera heilt fágað fall. Gerum ráð fyrir að Re f(z) ≤ M fyrir öll z ∈ C. Notið setningu
Liouville til að sýna að þá sé f fastafall.

Sönnun: Rifjum upp setningu Liouville:

(Setning Liouville) Látum f ∈ O(C) og gerum ráð fyrir að f sé takmarkað. Þá er f fasti.

10



Okkur nægir því að sýna að f sé takmarkað. Samkvæmt forsendu er Re f(z) ≤ M . Þurfum hinsvegar að
sýna að |f(z)| ≤ K fyrir eitthvað K. Athugum því að f(z) = Re f(z) + i Im f(z) en við höfum enga leið
hér til þess að meta Im f(z). Skoðum því í staðinn fallið ef(z) ∈ O(C). Athugum að það uppfyllir setningu
Liouville því: ∣∣∣ef(z)

∣∣∣ =
∣∣∣eRe f(z)+i Im f(z)

∣∣∣ = eRe f(z) ≤ eM = K

En þar með er fallið ef(z) fastafall samkvæmt setningu Liouville! En þar með er f(z) einnig fastafall.

Dæmi 17 Fourier-ummyndun fallsins f(x) er táknuð með f̂(k) og er skilgreind þannig að:

f̂(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx

Sýnið að ef f(x) = e− x2
2 þá sé f̂(k) = e− k2

2 .

Lausn: Einfalda leiðin er að fylla í ferninginn. Athugum að:

f(x)e−ikx = e− 1
2 x2

e−ikx = e− 1
2 (x2+2ikx) = e− 1

2 ((x+ik)2+k2) = e− 1
2 k2

e− 1
2 (x+ik)2

.

Því fæst einfaldlega að:

f̂(k) = 1√
2π

+∞∫
−∞

f(x)e−ikxdx = 1√
2π

e− 1
2 k2

+∞∫
−∞

e− 1
2 (x+ik)2

dx = 1√
π

e− 1
2 k2

+∞∫
−∞

e−y2
dy = e− 1

2 k2
.

Þar sem að í næst síðustu línunni notuðum við innsetninguna y = 1√
2 (x + ik), dy = 1√

2 dx og í síðustu
línunni notuðum við að jöfnu Kelvins: +∞∫

−∞

e−x2
dx =

√
π

Lord Kelvin á að hafa mælt eftirfarandi fleygu orð við nemendur sína um þessa jöfnu:

“A mathematician is one to whom that is as obvious as that twice two makes four is to you.”
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Ég sá þetta jarm og hélt að það yrði betra að taka það heldur en rétthyrninginn í dæmi 17.

Bónusdæmi: Sýnið að: +∞∫
−∞

cos(x)
(x2 + 1)2 dx = π

e
.

Lausn: Þetta er aðeins erfiðara heldur en það sem að ég sýndi í dæmatímanum. En hugmyndin er sú sama.
Það er kannski mikilvægt að benda fyrst á villuna sem ég gerði í dæmatímanum en við getum ekki notað:

cos(x)
(x2 + 1)2 → cos(z)

(z2 + 1)2

Því það mun springa á kraganum þegar við látum r → ∞ fyrir hálfhringinn. Til að lagfæra þetta þá notar
fólk í staðinn að:

eiz = ei(x+iy) = eix−y = e−yeix = e−y (cos(x) + i sin(x)) = e−y cos(x) + ie−y sin(x)

Þannig að þegar y = 0 á rauntalnaásnum þá getum við skipt út eiz með cos(x). Sjáum síðan af þverhlutanum
að við getum skipt út −ieiz fyrir sin(x). Af þessu sést líka hvers vegna við veljum efra hálfplanið, því þar
er e−y −−−−−→

y→+∞
0. Það er líka hægt að nota neðra hálfplanið en þá myndum við vilja skipta út fyrir e−iz.

Þetta útskýrir líka hvers vegna það er slæmt að velja cos(z) því þá höfum við bæði e−iz og eiz á sama tíma
því cos(z) = eiz+e−iz

2 þ.a. þetta springur bæði í efra hálfplaninu þegar þverhlutinn y → +∞ og í neðra
hálfplaninu þegar y → −∞. Að þessari ónauðsynlegu langloku lokinni þá athugum við að:∫

γ

eiz

(z2 + 1)2 dz =
∫

γ

eiz

(z + i)2(z − i)2 dz = 2πif ′(i) = π

e

þar sem að við skilgreindum:

f(z) = eiz

(z + i)2 , f ′(z) = ieiz(z + i)2 − 2(z + i)eiz

(z + i)4 , f ′(i) = − i

2e
.

En við þurfum samt að færa rök fyrir því að tegrið yfir kragann sé að stefna á núll. En það fæst núna með
því að athuga að ef γ2 táknar hálfhringinn með geisla r í efra hálfplaninu þá er:∫

γ2

∣∣∣∣ eiz

(z2 + 1)2

∣∣∣∣|dz| ≤ L(γ2) max
z∈γ2

∣∣∣∣ eiz

(z2 + 1)2

∣∣∣∣ = πr

(r2 + 1)2 max
z∈γ2

e− Im z = πr

(r2 + 1)2 e−r −−−→
r→∞

0.
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