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1 Heimadæmi 20. ágúst

Dæmi 1. Skoðum bylgjupakka með líkindaþéttleika

ρ(x) = Ae−λ(x−a)2
, (1.1)

þar sem A, a, λ eru jákvæðar rauntölur.

(a) Ákvarðið stöðlunarfastann A.
(b) Ákvarðið væntigildin á stærðunum ⟨x⟩, ⟨x2⟩ og staðalfrávikið σx.
(c) Rissið upp mynd af líkindaþéttleikanum ρ(x).

Lausn: (a) Við byrjum á því að rifja upp Gauss-heildin∫ ∞

−∞
e−αx2

dx =
√
π

α
,

∫ ∞

−∞
xe−αx2

dx = 0 ,
∫ ∞

−∞
x2e−αx2

dx = 1
2α

√
π

α
. (1.2)

En þar með fáum við með því að nota innsetninguna y = x− a að

1 =
∫ +∞

−∞
ρ(x)dx = A

√
π

λ
=⇒ A =

√
λ

π
. (1.3)

(b) Væntigildin og staðalfrávikið má síðan reikna með sömu innsetningu

⟨x⟩ =
∫ +∞

−∞
xρ(x)dx =

∫
(y + a)Ae−λy2

dy = a , (1.4)

⟨x2⟩ =
∫ +∞

−∞
x2ρ(x)dx =

∫ +∞

−∞
(y + a)2Ae−λy2 (1.5)

=
∫ +∞

−∞
(y2 + 2ay + a2)Ae−λy2 = A

1
2λ

√
π

λ
+ a2A

√
π

λ
= 1

2λ + a2 , (1.6)

σx =
√

⟨x2⟩ − ⟨x⟩2 = 1
λ

√
2
. (1.7)

(c) Við rissum upp mynd af líkindaþéttleikanum

a− σx a a+ σx

A

x

ρ(x)
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Dæmi 2. Klukkan t = 0 er staðsetningu agnar lýst með bylgjufallinu

Ψ(x, 0) =


Ax
a , 0 ≤ x ≤ a ,

A b−x
b−a , a ≤ x ≤ b ,

0 , annars ,x
(1.8)

þar sem A, a, b eru jákvæðar rauntölur.

(a) Ákvarðið stöðlunarfastann A.
(b) Rissið upp mynd af Ψ(x, 0) sem fall af x .
(c) Hvar er líklegast að finna ögnina klukkan t = 0?
(d) Hverjar eru líkurnar á því að finna ögnina vinstra meginn við a?
(e) Hvað er væntigildið ⟨x⟩?

Lausn: (a) Við fáum að

1 = A2
(∫ a

0

x2

a2 dx+
∫ b

a

(b− x)2

(b− a)2 dx

)
= A2

[ x3

3a2

]a
0

+
[
− (b− x)3

3(b− a)2

]b
a

 = A2b

3 (1.9)

En þar með ályktum við að A =
√

3
b . (b) Við rissum upp mynd af bylgjufallinu Ψ(x, 0) og

einnig af líkindaþéttleikanum ρ(x) = |Ψ(x, 0)|2

a b

A

x

Ψ(x, 0)

a b

A2

x

ρ(x)

(c) Það eru alltaf líkurnar núll á því að finna ögn í tilteknum punkti. Hinsvegar getum
við spurt hvar ρ(x) er stærst sem einhverskonar mælikvarða á það. En hér er það þá í x = a.

(d) Höfum þá að

P (x < a) = A2

a2

∫ a

0
x2dx = A2a

3 = a

b
. (1.10)

(e) Væntigildið er þá

⟨x⟩ = A2
(∫ a

0

x3

a2 dx+
∫ b

a

(b− x)2x

(b− a)2 dx

)
= A2

[ x4

4a2

]a
0

+
[
b2

2 x
2 − 2b

3 x
3 + 1

4x
4

(b− a)2

]b
a

 (1.11)

= 3
b

(
a2

4 − a2

4 + ab

6 + b2

12

)
= 1

4(2a+ b) . (1.12)
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2 Heimadæmi 27. ágúst

Dæmi 3. Ögn með massa m er í einvíðum óendanlega djúpum mættisbrunni,

V (x) =

0 , 0 < x < a ,

∞ , annars .
(2.1)

Ástandi agnarinnar klukkan t = 0 er lýst með bylgjufallinu

Ψ(x, 0) =

A sin
(

2πx
a

)
, 0 < x < a

2 ,

0 , annars .
(2.2)

(a) Ákvarðið fastann A þannig að bylgjufallið sé staðlað og teiknið graf sem sýnir
líkindaþéttleikann fyrir staðsetningu agnarinnar.

(b) Hver eru væntigildi mælistærðanna X̂ og P̂ klukkan t = 0?
(c) Hvaða líkur eru á að mæling á orku agnarinnar gefi lægstu leyfilegu orku?

Lausn: (a) Við athugum að til að staðla líkindafallið þá fáum við að

1 =
∫

Ψ∗Ψdx = A2
∫ a/2

0
sin2

(2πx
a

)
dx = A2

2

∫ a/2

0

(
1 − cos

(4πx
a

))
dx (2.3)

= A2

2

[
x− a

4π sin
(4πx

a

)]a/2

0
= A2

2 · a2 þ.a. A = 2√
a
. (2.4)

Þar sem í þriðja jafnaðarmerkinu notum við hornafallaregluna sin2(A) = 1
2(1 − cos(2A)).

Grafið af líkindaþéttleikanum ρ(x) = 4
a sin2(2πx

a ) verður þá

1
4a

1
2a

a

4
a

x

ρ(x)
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(b) Af grafinu sést að ⟨x⟩ = 1
4a og ⟨p⟩ = 0 þar sem að bylgjufallið er jafnstætt um

punktinn x = 1
4a.1 En ef við viljum þjást örlítið lengur þá getum við líka sýnt fram á það

með beinum reikningum. Fáum þá að

⟨x⟩ =
∫

Ψ∗xΨ dx = A2
∫ a/2

0
x sin2

(2πx
a

)
dx = A2

2

∫ a/2

0
x

(
1 − cos

(4πx
a

))
dx (2.5)

= A2

2

([1
2x

2 − a

4πx sin
(4πx

a

)]a/2

0
− a

4π

∫ a/2

0
sin
(4πx

a

))
(2.6)

= A2

2

(
a

2 +
(
a

4π

)[
cos
(4πx

a

)]a/2

0

)
= A2

2 · a2 = a

4 . (2.7)

⟨p⟩ =
∫ ∞

−∞
Ψ∗ (−iℏ∂x) Ψ dx = −iℏA2

∫ a/2

0
sin
(2πx

a

)
∂x

(
sin
(2πx

a

))
dx (2.8)

= −iℏA2
∫ a/2

0
sin
(2πx

a

)
· 2π
a

cos
(2πx

a

)
dx (2.9)

= − iℏA2π

a

∫ a/2

0
sin
(4πx

a

)
dx (2.10)

= − iℏA2π

a

[
− a

4π cos
(4πx

a

)]a/2

0
= iℏA2

4 [cos(2π) − cos(0)] = 0. (2.11)

(c) Við þurfum þá að liða bylgjufallið Ψ(x, 0) í eiginfallaröð af gerðinni

Ψ(x, 0) =
∑
n

cnψn(x) , þar sem ψn(x) =
√

2
a

sin
(
nπx

a

)
með n ≥ 1. (2.12)

Stuðlana cn má síðan ákvarða með “trikki Fouriers” þar sem að eiginföllin {ψn} mynda
þverstaðlaðan grunn fyrir fallarúmið í þeim skilningi að

∫
ψ∗
mψn dx = δnm =

1 ef n = m,
0 annars.

(2.13)

þar sem δnm er Kronecker delta táknið. Til þess að gera það þá athugum við fyrst að∫
ψ∗
mΨ(x, 0)dx =

∫
ψ∗
m

∑
n

cnψn = cm (2.14)

Líkurnar á því að finna Ψ(x, 0) í ástandinu ψn eru síðan Pn = |cn|2. Hér þarf því einungis að
reikna stærðina P1 = |c1|2. Sem ánægja og yndisauki látum við hinsvear almenna tilvikið á

1Fullyrðing: Ef raungilt einvítt bylgjufall er jafnstætt um punkt x = x0 þá er ⟨x⟩ = x0 og ⟨p⟩ = 0.
Sönnun er eftirlátin lesanda sem æfing.
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cm fylgja með. Við fáum fyrir m ̸= 2 að

cm =
∫ a/2

0
ψ∗
m(x)Ψ(x, 0) dx = A

√
2
a

∫ a/2

0
sin
(2πx

a

)
sin
(
mπx

a

)
dx

= A

2

√
2
a

∫ a/2

0

(
cos

(
(2 −m)πx

a

)
− cos

(
(2 +m)πx

a

))
dx

= A√
2a

[
a

(2 −m)π sin
(

(2 −m)πx
a

)
− a

(2 +m)π sin
(

(2 +m)πx
a

)]a/2

0

= A

π

√
a

2

( 1
2 −m

sin
(

(2 −m)π2

)
− 1

2 +m
sin
(

(2 +m)π2

))
= A

π

√
a

2

( 1
2 −m

cos(π) sin
(
mπ

2

)
− 1

2 +m
cos(π) sin

(
mπ

2

))
= A

π

√
a

2

( 1
2 −m

+ 1
2 +m

)
sin
(
mπ

2

)
= A

π

√
a

2

( 4
m2 − 4

)
sin
(
mπ

2

)
= 4

√
2

π(m2 − 4) sin
(
mπ

2

)
.

þar sem að við notuðum liðunar og summureglur hornafalla

sin(A) sin(B) = 1
2 (cos(A−B) − cos(A+B))

sin(A+B) = sin(A) cos(B) + cos(A) sin(B) .

Þetta gefur okkur því að líkurnar á að finna ögnina í grunnástandinu með m = 1 eru

P1 = |c1|2 =
(

4
√

2
π(−3)

)2

= 32
9π2 ≈ 0,36 . (2.15)

Fyrir m = 2 fæst síðan að c2 = A
√

2
a

∫ a/2
0 sin2

(
2πx
a

)
= 1√

2 . Svo til gamans sýnum við graf af
líkunum á því að finna ögnina í eiginástandi m hér að neðan:

1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

m

P
m
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Dæmi 4. Fallið F (z, ξ) = e−z2+2zξ er svokallað framleiðandi fall (e. generating function) fyrir
Hermite-fleirliðurnar Hn(ξ),

F (z, ξ) =
∞∑
n=0

zn

n!Hn(ξ) . (2.16)

(a) Notið að
Hn(ξ) = ∂nF

∂zn
(0, ξ) (2.17)

til að reikna fyrstu fjórar Hermite-fleirliðurnar. Berið niðurstöðuna saman við töflu
2.1 á bls. 52 í kennslubókinni.

(b) Notið framleiðandi fallið til að sanna eftirfarandi reglur um Hermite-fleirliður:

Hn+1(ξ) = 2ξ Hn(ξ) − 2nHn−1(ξ) , (2.18)
d

dξ
Hn(ξ) = 2nHn−1(ξ) . (2.19)

(c) Notið niðurstöðuna í (b)-lið til að reikna H6(ξ) og H7(ξ) út frá fleirliðunum sem
gefnar eru í töflu 2.1.

Lausn: (a) Við skrifum út framleiðandi fallið upp að O(z5). Fáum að

e−z2+2ξz = 1 + (−z2 + 2ξz) + 1
2!(−z

2 + 2ξz)2 + 1
3!(−z

2 + 2ξz)3 + 1
4!(−z

2 + 2ξz)4 + O(z5)

= 1 + (−z2 + 2ξz) + 1
2(z4 − 4ξz3 + 4ξ2z2) + 1

6(z4 − 4ξz3 + 4ξ2z2)(−z2 + 2ξz) + 1
24

(
(2ξz)4 + O(z5)

)
= 1 + (−z2 + 2ξz) + 1

2(z4 − 4ξz3 + 4ξ2z2) + 1
6(−8ξ2z4 + 8ξ3z3 − 4ξ2z4) + 2

3ξ
4z4 + O(z5)

= 1 + 2ξz + (−1 + 2ξ2)z2 + (−2ξ + 4
3ξ

3)z3 +
(

1
2 − 2ξ2 + 2

3 · ξ4
)
z4 + O(z5)

= 1 + 2ξz + z2

2 (−2 + 4ξ2) + z3

6 (−12ξ + 8ξ3) + z4

24(12 − 48ξ2 + 16ξ4) + O(z5) .

Af þessu lesum við fyrstu fimm Hermite-margliðurnar

H0(ξ) = 1 , H1(ξ) = 2ξ , H2(ξ) = −2 + 4ξ2 , H3(ξ) = −12ξ + 8ξ3 H4(ξ) = 12 − 48ξ2 + 16ξ4 .

(b) Við byrjum á því að athuga að með því að nota framleiðandi fallið fæst

∂F

∂z
= ∂

∂z

(
e−z2+2ξz

)
= (−2z + 2ξ)e−z2+2ξz = 2(ξ − z)F . (2.20)

Með því að skrifa út raðirnar báðum meginn sjáum við því að

∂F

∂z
= ∂

∂z

( ∞∑
n=0

zn

n!Hn(ξ)
)

=
+∞∑
n=1

zn−1

(n− 1)!Hn(ξ) =
+∞∑
m

zm

m!Hm+1(ξ) (2.21)
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þar sem að við endurskilgreindum röðina með ’dummy’ vísinum m = n − 1 þ.e. n = m + 1.
Hin hlið jafnaðarmerkisins verður síðan

2(ξ − z)F =
∑
n=0

zn

n! (2ξHn(ξ)) −
+∞∑
k=0

zk+1

k! 2Hk(ξ) (2.22)

=
+∞∑
n=0

zn

n! (2ξHn(ξ)) −
+∞∑
n=1

zn

n! 2nHn−1(ξ) (2.23)

=
+∞∑
n=0

zn

n! (2ξHn(ξ) − 2nHn−1(ξ)) . (2.24)

Þar sem að í öðru jafnaðarmerkinu endurskilgreindum við röðina með ’dummy’ vísinum n =
k + 1 og notuðum svo í síðasta skrefinu að seinni liðurinn er núll þegar n = 0. Þetta gefur
okkur því með samanburði að

Hn+1(ξ) = 2ξHn(ξ) − 2nHn−1(ξ) . (2.25)

Til þess að leiða út hina jöfnuna þá fáum við að fyrir framleiðandi fallið gildir að
∂F

∂ξ
= ∂

∂ξ
e−z2+2ξz = 2ze−z2+2ξz = 2zF . (2.26)

Með því að skoða aftur báðar hliðar tilheyrandi veldaraða sést að

∂F

∂ξ
=

+∞∑
n=0

zn

n!H
′
n(ξ) = 2zF =

+∞∑
k=0

zk+1

k! 2Hk(ξ) =
+∞∑
m=1

zm

m! 2mHm−1(ξ) (2.27)

þar sem að í síðasta skrefinu endurskilgreindum við röðina með ’dummy’ breytunni m = k+1.
Þar með ályktum við að

H ′
n(ξ) = 2nHn−1(ξ) . (2.28)

(c) Við notum þá fyrri venslins á forminu Hn(ξ) = 2ξHn−1(ξ) − 2(n− 1)Hn−2(ξ) og fáum

H5(ξ) = 2ξH4(ξ) − 2 · 4H3(ξ) = 2ξ(16ξ4 − 48ξ2 + 12) − 8(8ξ3 − 12ξ)
= 32ξ5 − 96ξ3 + 24ξ − 64ξ3 + 96ξ
= 32ξ5 − 160ξ3 + 120ξ.

H6(ξ) = 2ξH5(ξ) − 2 · 5H4(ξ) = 2ξ(32ξ5 − 160ξ3 + 120ξ) − 10(16ξ4 − 48ξ2 + 12)
= 64ξ6 − 320ξ4 + 240ξ2 − 160ξ4 + 480ξ2 − 120
= 64ξ6 − 480ξ4 + 720ξ2 − 120.

H7(ξ) = 2ξH6(ξ) − 2 · 6H5(ξ) = 2ξ(64ξ6 − 480ξ4 + 720ξ2 − 120) − 12(32ξ5 − 160ξ3 + 120ξ)
= 128ξ7 − 960ξ5 + 1440ξ3 − 240ξ − 384ξ5 + 1920ξ3 − 1440ξ
= 128ξ7 − 1344ξ5 + 3360ξ3 − 1680ξ.
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3 Heimadæmi 4. september

Dæmi 5. Einvítt skammtakerfi inniheldur ögn með massa m í mætti,

V (x) = −αℏ2

ma

(
δ(x− a) + δ(x+ a)

)
,

þar sem α > 0 er fasti og δ(x) er Dirac-deltafallið.

(a) Sýnið að kerfið hafi ávallt að minnsta kosti eitt bundið ástand.
(b) Sýnið að tvö bundin ástönd séu fyrir hendi ef α > 1

2 .

Lausn: (Athugið að lausnin þarf ekki að vera svona löng þetta er bara aðeins lengra til
útskýringar). Skoðum bundin ástönd með E < 0. Byrjum á því að teikna mynd af mættinu:

x
x = −a x = a

I II III

−αℏ2

ma
δ(x+ a) −αℏ2

ma
δ(x− a)

Þar sem að mættið V (x) er jafnsætt um x = 0 þá er samkvæmt dæmi 2.1c í Griffiths hægt
að gera ráð fyrir því að bylgjufallið sé jafnstætt eða oddstætt. Við byrjum á því að gera ráð
fyrir að bylgjufallið sé jafnstætt. Á hverju af svæðunum I, II og III er mættið fasti. Almennt
þegar að V (x) = V er fasti þá getum við umritað Schrödinger-jöfnuna þannig að

− ℏ2

2mψ′′(x) + V ψ(x) = Eψ(x) =⇒ ψ′′(x) + 2m(E − V )
ℏ2 ψ(x) = 0 . (3.1)

Næst skiptir formerkið á E − V máli.

• Ef E − V > 0: bylgjuföllA cos(kx)+B sin(kx) eðaAeikx+Be−ikx með k = 1
ℏ
√

2m(E − V ).

• Ef E = V : þá er lausnin A+Bx.

• Ef E − V < 0: breiðbogaföllA cosh(κx)+B sin(κx) eðaAeκx+Be−κx með κ = 1
ℏ
√

−2m(E − V ).

Í þessu dæmi er V = 0 á svæðunum I, II og III. Við höfum síðan E < 0 þannig að lausnin á
hverju svæði um sig er breiðbogalausn með κ = 1

ℏ
√

−2mE. Höfum því

ψ(x) =


ψI(x) = AIe

κx +BIe
−κx , ef x < −a

ψII(x) = AIIe
κx +BIIe

−κx , ef |x| < a

ψIII(x) = AIIIe
κx +BIIIe

−κx , ef x > a

(3.2)
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Bylgjufallið þarf að vera takmarkað þegar að x → ±∞ svo við sjáum að þá verður BI = 0 og
AIII = 0. Þá höfum við

ψ(x) =


ψI(x) = AIe

κx , ef x < −a
ψII(x) = AIIe

κx +BIIe
−κx , ef |x| < a

ψIII(x) = BIIIe
−κx , ef x > a

(3.3)

(1) Ef bylgjufallið er jafnstætt þá er A := AI = BIII og B := AII = BII svo það gefur

ψ(x) =


ψI(x) = Aeκx , ef x < −a
ψII(x) = B(eκx + e−κx) , ef |x| < a

ψIII(x) = Ae−κx , ef x > a

(3.4)

Bylgjufallið þarf síðan að vera samfellt í x = ±a (þar sem að við erum búin að nota að
bylgjufallið sé jafnstætt nægir okkur að skoða x = +a). En það gefur okkur skilyrðið

Bylgjufallið samfellt í x = a: B(eκa + e−κa) = Ae−κa . (3.5)

Næst þurfum við að skoða afleiðuskilyrðið í x = a. Almennt þegar maður er með delta-fall í
punkti x = x0 er hugmyndin að tegra Schrödinger-jöfnuna yfir bilið [x0 − ϵ, x0 + ϵ] og taka
markgildið þegar ϵ → 0. Hér fáum við því

0 = lim
ϵ→0

∫ a+ϵ

a−ϵ

[
− ℏ2

2mψ′′(x) + V (x)ψ(x) − Eψ(x)
]
dx = − ℏ2

2m∆ψ′(a) − αℏ2

ma
ψ(a) . (3.6)

þar sem að við notuðum skilgreininguna á Dirac δ-fallinu og skilgreindum einnig ritháttinn

∆ψ′(a) = lim
ϵ→0

[
ψ′(a+ ϵ) − ψ′(a− ϵ)

]
= ψ′

III(a) − ψ′
II(a) . (3.7)

Þetta gefur því eftirfarandi skilyrði ∆ψ′(a) = −2α
a ψ(a) og því

Afleiðuskilyrðið í x = a − κAe−κa − κB(eκa − e−κa) = −2α
a
Ae−κa . (3.8)

Með því að taka saman afleiðuskilyrðið og samfeldnina í x = a þá fáum við að

B(eκa − e−κa) = (−1 + 2α
aκ

)Ae−κa = (−1 + 2α
aκ

)(eκa + e−κa)B (3.9)

En það gefur því eftirfarandi skilyrði fyrir κ

tanh(κa) = −1 + 2α
aκ

. (jafngilt form er e−2κa = aκ

α
− 1) (3.10)

Þetta er jafna sem verður að leysa með tölulegum aðferðum. Við sýnum hér nokkur mismun-
andi gröf með z = aκ fyrir breytileg gildi á α.
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Við sjáum af gröfunum að almennt hefur jafnstæða lausnin alltaf nákvæmlega eina rót
og því er ávallt a.m.k. eitt bundið ástand fyrir hendi. Það er hægt að sýna þetta aðeins
formlegra með því að skoða jafngilda formið e−2κa = −1 + aκ

α

Skoðum núna (2) Ef bylgjufallið er oddstætt þá er A := −AI = BIII og B := AII =
−BII svo það gefur

ψ(x) =


ψI(x) = −Aeκx , ef x < −a
ψII(x) = B(eκx − e−κx) , ef |x| < a

ψIII(x) = Ae−κx , ef x > a

(3.11)

Samfelldniskilyrðið og afleiðuskilyrðið gefur þá

Bylgjufallið samfellt í x = a: B(eκa − e−κa) = Ae−κa . (3.12)

Afleiðuskilyrðið í x = a − κAe−κa − κB(eκa + e−κa) = −2α
a
Ae−κa . (3.13)

En þetta gefur torræða skilyrðið

coth(κa) = −1 + 2α
κa

(jafngilt form er e−2κa = 1 − aκ

α
) (3.14)

Þetta er aftur jafna sem að þarf að leysa með tölulegum aðferðum.

0.5 1 1.5 2
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enginn skurpunktur
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skp. z = 0

α = 1
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0
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10

skp. z = 0.797

α = 1

Við sjáum af gröfunum að ferlarnir skerast einungis ef α > 1
2 .

– 11 –



Dæmi 6. Reiknið endurkastsstuðul R og gegnstreymisstuðul T fyrir agnir með orku E > V0 > 0
sem lenda á mættisþröskuldi

V (x) =

V0 ef |x| < a ,
0 ef |x| > a .

Talað er um hermur ef T = 1 fyrir ákveðin gildi á orku agnanna. Sýnið að hermur verða
í þessu kerfi þegar orkan uppfyllir√

2m(E − V0) = nπℏ
2a , n = 1, 2, 3, . . .

Túlkið hermuskilyrðið út frá de Broglie bylgjulengd agnanna á svæðinu |x| < a.

Lausn: Við höfum fengið endanlegan mættisþröskuld:

x
x = 0

V0

x = −a x = a

I II III

AIe
ikx

BIe
−ikx

AIIe
ikx

BIIe
−ikx

AIIIe
ikx

Lausn Schrödinger-jöfnunnar á hverju svæði fyrir sig er þá

ψ(x) =


ψI(x) = AIe

ikx +BIe
−ikx ,

ψII(x) = AIIe
iκx +BIIe

−iκx ,

ψIII(x) = AIIIe
ikx +BIIIe

−ikx .

(3.15)

með k = 1
ℏ
√

2mE og κ = 1
ℏ
√

2m(E − V0). Þar sem að við viljum skoða óbundin ástönd sem
koma inn frá vinstri þá setjum við BIII = 0. Þá gefa samfeldni og afleiðskilyrðin í x = −a
okkur að AIe

−ika +BIe
ika = AIIe

−iκa +BIIe
iκa ,

ik
(
AIe

−ika −BIe
ika
)

= iκ
(
AIIe

−iκa −BIIe
iκa
)
.

(3.16)

Með því að leggja saman og draga frá þessar jöfnur fæst að2AI = (1 + κ
k )AIIe

−iκa + (1 − κ
k )BIIe

iκa ,

2BI = (1 − κ
k )AIIe

−iκa + (1 + κ
k )BIIe

iκa
(3.17)
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Samfeldni og afleiðuskilyrðin í x = a gefa síðan aðAIIIe
ika = AIIe

iκa +BIIe
−iκa ,

ikAIIIe
ika = iκ

(
AIIe

iκa −BIIe
−iκa) . (3.18)

Nú gefur samlagning og frádráttur okkur að2AI = (1 + κ
k )AIIe

−iκa + (1 − κ
k )BIIe

iκa ,

2BI = (1 − κ
k )AIIe

−iκa + (1 + κ
k )BIIe

iκa
(3.19)

Þar af leiðir að

2AIe
−ika = 1

2(1 + κ

k
)(1 + k

κ
)AIIIe

ikae−2iκa + 1
2(1 − κ

k
)(1 − k

κ
)AIIIe

ikae2iκa (3.20)

þ.a.

4e−2ika AI
AIII

=
(

2 +
(
κ

k
+ k

κ

))
e−2iκa +

(
2 −

(
κ

k
+ k

κ

))
e2iκa (3.21)

= 4 cos(2κa) − 2i
(
κ

k
+ k

κ

)
sin(2κa) (3.22)

sem við getum umritað þannig að

AI
AIII

=
[
cos(2κa) − i

2

(
κ

k
+ k

κ

)
sin(2κa)

]
e2ika (3.23)

En það gefur því að

1
T

=
∣∣∣∣ AI
AIII

∣∣∣∣2 = cos2(2κa) +
(κk + k

κ)2

4 sin2(2κa) = 1 +
[

(κk + k
κ)2

4 − 1
]

sin2(2κa) . (3.24)

Við athugum síðan að

(κk + k
κ)2

4 − 1 =
(
κ2 − k2

2kκ

)2

=
(

2m(E − V0) − 2mE
2
√

2mE · 2m(E − V0)

)2

= V 2
0

4E
√
E − V0

, (3.25)

En þar með ályktum við að

1
T

= 1 + V 2
0

4E
√
E − V0

sin2
(2a

ℏ

√
2m(E − V0)

)
, (3.26)

Svo er R = 1 − T . Athugum að samkvæmt ofangreindri útleiðslu sést að T = 1 þegar

2a
ℏ

√
2m(E − V0) = nπ =⇒

√
2m(E − V0) = nπℏ

2a = nh

4a (3.27)

En de Broglie bylgjulengdin er skilgreind sem λdB = h
p = h√

2m(E−V0)
en staðbylgjur (með

lokuð jaðarskilyrði) myndu hafa 2a = n
2λdB saman gefur þetta að 4a

n = λdB = h√
2m(E−V0)

.
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4 Heimadæmi 11. september

Dæmi 7. Einvíður hreintóna sveifill hefur Hamilton-virkjann Ĥ = 1
2m P̂

2 + 1
2mω

2X̂2. Ástandi
sveifilsins klukkan t = 0 er lýst með bylgjufallinu

Ψ(x, 0) =

Axe
− mω

2ℏ x
2 ef x > 0,

0 ef x < 0 .

(a) i. Ákvarðið fastann A þannig að bylgjufallið sé staðlað.
ii. Reiknið væntigildi X̂ og P̂ í þessu ástandi.

(b) Nú er orka agnarinnar mæld. Hvaða líkur eru á að mælingin gefi lægstu mögulegu
orku sveifilsins?

Lausn: Við munum nota eftirfarandi heildi viðstöðulaust í þessari lausn:∫ ∞

0
xe−αx2

dx = 1
2α ,

∫ ∞

0
x2e−αx2

dx = 1
4α

√
π

α
,

∫ ∞

0
x3e−αx2

dx = 1
2α2 . (4.1)

Til að byrja með athugum við að

1 =
∫

|Ψ(x, 0)|2dx = |A|2
∫ ∞

0
x2e− mω

ℏ x2
dx = |A|2

4 ( ℏ
mω )3/2√

π (4.2)

En af því leiðir því að A = 2
π1/4 (mωℏ )3/4. Næst athugum við að

⟨X̂⟩ = |A|2
∫ ∞

0
x3e− mω

ℏ x2
dx = |A|2 1

2(mωℏ )2 = 2√
π

√
ℏ
mω

. (4.3)

Svo er

⟨P̂ ⟩ = −iℏ|A|2
∫ ∞

0
xe− mω

2ℏ x
2
∂x
(
xe− mω

2ℏ x
2)
dx (4.4)

= −iℏ|A|2
∫ ∞

0

[
xe− mω

ℏ x2 − mω

ℏ
x3e− mω

ℏ x2
]
dx (4.5)

= −iℏ|A|2
(

ℏ
2mω − mω

2ℏ(mωℏ )2

)
= 0 . (4.6)

Loks athugum við að þegar almennt má rita bylgjufallið sem línulega samantekt á forminu
Ψ(x, 0) = ∑

n cnψn líkurnar á því að finna ögnina í grunnástandinu ψ0(x) =
(
mω
πℏ
)1/4

e− mω
2ℏ x

2

(sem er það ástand sem hefur lægsta orku) er þá P = |c0|2 en stuðulinn c0 í liðuninni má
reikna samkvæmt

c0 =
∫ ∞

0
ψ0(x)Ψ(x, 0)dx = A

(
mω

πℏ

)∫ ∞

0
xe− mω

ℏ x2
dx = 1√

π
. (4.7)

Líkurnar eru því P = |c0|2 = 1
π ≈ 0,32.
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Dæmi 8. Andhverfanleg línuleg vörpun sem uppfyllir Û †Û = 1 er sögð vera einoka.

(a) Sýnið að einoka vörpun varpeitir innfeldi, þ.e.a.s. að ⟨Ûα|Ûβ⟩ = ⟨α|β⟩ fyrir alla
vigra |α⟩ og |β⟩ í innfeldisrúmi V .

(b) Sýnið að eigingildi einoka vörpunar hafi lengd 1.
(c) Sýnið að eiginvigrar einoka vörpunar, sem tilheyra mismunandi eigingildum, séu

hornréttir.
(d) Sýnið að vörpunin eiĤ sé einoka ef Ĥ er sjálfoka.

Lausn:

(a) Látum α̃ = Ûα og β̃ = Ûβ. Þá fæst

⟨α̃|β̃⟩ =
∑
n

α̃∗
nβ̃n =

∑
n

(∑
m

Unmαm

)∗(∑
k

Unkβk

)
=
∑
n,m,k

U∗
nmUnkα

∗
mβk (4.8)

En skilyrðið Û †Û = 1 þýðir í fylkjamargföldun að∑
n

U∗
nℓUnd = δℓd (4.9)

þar sem að δℓd er Kronecker-delta táknið. En þetta gefur okkur því að

⟨α̃|β̃⟩ =
∑
n,m,k

U∗
nmUnkα

∗
mβk =

∑
m,k

δmkα
∗
mβk =

∑
m

α∗
mβm = ⟨α|β⟩ . (4.10)

(b) Látum λ vera eigingildi Û með eiginvigur |v⟩ þannig að Û |v⟩ = λ |v⟩. En þetta gefur
þá með niðurstöðunni í (a) að

⟨v|v⟩ =
〈
Ûv
∣∣∣Ûv〉 = ⟨λv|λv⟩ = |λ|2 ⟨v|v⟩ (4.11)

Nú er ⟨v|v⟩ ̸= 0 því |v⟩ er eiginvigur Û . Þar með ályktum við að |λ|2 = 1 þ.e. að
eigingildi einoka vörpunar hefur lengd 1 (gæti verið tvinntala eiγ).

(c) Látum λ og γ vera tvö ólík eigingildi fyrir eiginvigra |v⟩ og |w⟩. Með því að nota
niðurstöðuna úr (b) fæst að

⟨v|w⟩ =
〈
Ûv
∣∣∣Ûw〉 = λ∗γ ⟨v|w⟩ , þ.a. (1 − λ∗γ) ⟨v|w⟩ = 0 . (4.12)

Við ályktum því að annað hvort er ⟨v|w⟩ = 0 eða að 1 = λ∗γ = λγ∗. Sýnum að hið
síðara leiði til mótsagnar. Þar sem λ og γ eru eigingildi einoka vörpunar má skv. (b)-lið
skrifa λ = eia og γ = eib en þá fæst að

1 = ei(b−a) (4.13)

en það þýðir að mest muni 2πn á a og b en þá væri λ = γ sem er mótsögn. Því ályktum
við að eiginvigrar einoka vörpunar séu þverstaðlaðir.
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(d) Nú er Ĥ sjálfoka en það þýðir að Ĥ† = Ĥ. Hér fáum við því

(eiĤ)†eiĤ =
(
I + iĤ + (iĤ)2

2 + . . .

)†(
I + iĤ + (iĤ)2

2 + . . .

)
(4.14)

=
(
I − iĤ† + (−iĤ†)2

2 + . . .

)(
I + iĤ + . . .

)
(4.15)

= I + i
(
H − Ĥ†

)
+ . . . (4.16)

= I . (4.17)

Aðeins formlegri leið til að skrifa út þessa aðferð væri síðan eftirfarandi

(eiĤ)†eiĤ =
∑
n,m

(−iĤ)n
n!

(iĤ)m
m! =

∑
n,m

(−i)n(i)m
n!m! Ĥn+m (4.18)

setjum svo k = n+m og fáum

=
∑
k

(−i)kĤk
∑
m

(−1)m
(k −m)!m! (4.19)

En seinni röðin er δk,0 og það gefur niðurstöðuna því (Ĥ)0 = I.

Einfaldasta aðferðin Er líklegast að nota að
[
Ĥ, Ĥ

]
= 0 og nota Baker–Campbell–Hausdorff

þannig að

(
eiĤ

)†
eiĤ = e−iĤeiĤ = e−iĤ+iĤ = e0̂ =

∑
n

0̂n
n! = Î . (4.20)

þar sem að Î táknar einingarfylkið.

– 16 –



5 Heimadæmi 18. september

Dæmi 9. Hamiltonvirki einvíðs hreintóna sveifils er Ĥ = ℏω
(
â+â− + 1

2 1̂
)
.

(a) Sýnið að virkinn Â = iâ2
+â− − iâ2

+â− sé sjálfoka.
(b) Látum ψn vera eiginfall Ĥ með eigingildið ℏω(n+ 1

2). Fyrir gefið gildi á n, tilgreinið
og rökstyðjið fyrir hvaða m fylkjastakið ⟨ψm|Â|ψn⟩ þar sem Â er sjálfoka virkinn
úr (a)-lið, er frábrugðið núlli.

(c) Reiknið þau fylkjastök í (b)-lið sem eru frábrugðin núlli ef n = 1.

Lausn: (a) Við athugum fyrst að â± = 1√
2mℏω

(
∓ip̂+mωx1̂

)
þ.a. â†

± = â∓. Síðan
gildir að (ABC)† = C†B†A† þannig að

Â† =
(
iâ+â

2
− − iâ2

+â−
)†

=
(
−iâ†

−â
†
−â

†
+ + iâ†

−â
†
+â

†
+

)
= −iâ2

+â− + iâ+â
2
− = Â . (5.1)

Þar með höfum við sýnt að Â er sjálfoka en það þýðir að Â† = Â. Fylgisetning segir þá að
öll eigingildi Â eru rauntölur. (b) Við notum eiginleika hækkunar og lækkunarvirkjanna

â+ψn =
√
n+ 1 , ψn+1 , â−ψn =

√
n , ψn−1 . (5.2)

Fáum því ef n ≥ 2 að

⟨ψm|Â|ψn⟩ = ⟨ψm| iâ+â
2
− − iâ2

+â− |ψn⟩ (5.3)

Fáum því ef n ≥ 2 að

⟨ψm|Â|ψn⟩ = ⟨ψm| iâ+â
2
− − iâ2

+â− |ψn⟩ (5.4)
= i ⟨ψm|â+â

2
−|ψn⟩ − i ⟨ψm|â2

+â−|ψn⟩ (5.5)
= i ⟨ψm|â+â−

√
n|ψn−1⟩ − i ⟨ψm|â2

+
√
n|ψn−1⟩ (5.6)

= i
√
n

√
n− 1 ⟨ψm|â+|ψn−2⟩ − i

√
n

√
n ⟨ψm|â+|ψn⟩ (5.7)

= i
√
n(n− 1)δm,n−1 − in

√
n+ 1δm,n+1 . (5.8)

Fyrir n = 1 fæst hinsvegar að

⟨ψm|Â|ψ1⟩ = ⟨ψm|−iâ2
+â−|ψ1⟩ = −i ⟨ψm|â2

+|ψ0⟩ = −i ⟨ψm|â+|ψ1⟩ = −i
√

2δm,2 . (5.9)

svo eina fylkjastakið sem er ekki núll er ⟨ψ2|Â|ψ1⟩ = −i
√

2.
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Dæmi 10. Finnið líkindaþéttleika skriðþungans |Φ(p, t)|2 fyrir grunnástand og fyrsta örvaða ástand
agnar í óendanlega djúpum mættisbrunni af breidd a í einni vídd. Teiknið graf |Φ(p, t)|2

fyrir bæði tilfellin.

Lausn: Hér höfum við

Ψn(x, t) = ψn(x)e− iEnt
ℏ =

√
2
a

sin
(
πx

a

)
e− iEnt

ℏ , ef 0 < x < a. (5.10)

Við fáum þá að

Φn(p, t) := 1√
2πℏ

∫ ∞

−∞
e− i

ℏpx ψn(x, t) dx (5.11)

= e− i
ℏEnt

√
aπℏ

∫ a

0
e− i

ℏpx sin
(
nπ
a x
)
dx (5.12)

= e− i
ℏEnt

2i
√
aπℏ

∫ a

0
e− i

ℏpx
(
ei
nπ
a x − e−inπa x

)
dx (5.13)

= e− i
ℏEnt

2i
√
aπℏ

[
1

i(nπa − p
ℏ)e

i(nπa −p
ℏ )x + 1

i(nπa + p
ℏ)e

−i(nπa +p
ℏ )x
]a

0
(5.14)

= −e− i
ℏEnt

2
√
aπℏ

(−1)ne− ipa
ℏ

nπ
a − p

ℏ
+ (−1)ne− ipa

ℏ
nπ
a + p

ℏ
− 1

nπ
a − p

ℏ
− 1

nπ
a + p

ℏ

 (5.15)

= − e− i
ℏEnt

√
aπℏ

· nπ/a(
nπ
a

)2 −
(p
ℏ
)2 ((−1)ne− ipa

ℏ − 1
)

(5.16)

=
√

aπ
ℏ

n e− i
ℏEnt

(nπ)2 −
(ap

ℏ
)2 (e ipa2ℏ − (−1)ne− ipa

2ℏ
)
e− ipa

2ℏ . (5.17)

Fáum þá að

ρn(p, t) = |Φn(p, t)|2 =


aπ
ℏ

4(2k)2

(2kπ)2−(ap/ℏ)2 sin2(pa2ℏ ) ef n = 2k slétt
aπ
ℏ

4(2k+1)2

((2k+1)π)2−(ap/ℏ)2 cos2(pa2ℏ ) ef n = 2k + 1 oddatala
(5.18)

Tökum sér í lagi eftir að ρn(p, t) = ρn(p) er tímaóháð og því fást eftirfarandi gröf:

p

ρ1(p)

p

ρ2(p)
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6 Heimadæmi 25. september

Dæmi 11. Fylki Hamiltonvirkjans Ĥ og mælistærðar Â í skammtakerfi eru

Ĥ = ℏω

1 0 0
0 0 0
0 0 −1

 , Â = a

0 1 0
1 0 1
0 1 0

 (6.1)

þar sem a > 0 er fasti.

(a) i. Hvaða mæligildi getur mæling á Â gefið?
ii. Getur kerfið verið í ástandi þar sem hægt er að segja með fullri vissu fyrir um

niðurstöðu mæling á bæði Â og orku kerfisins. Rökstyðjið svarið.
(b) Klukkan t = 0 er framkvæmd mæling á Â, sem gefur hæsta mögulega mæligildi.

Reiknið líkurnar á að fá aftur sama gildi ef mælingin er endurtekin klukkan t > 0.

Lausn: (ai) Við byrjum á því að ákvarða eigingildi og eiginvigra Â. Athugum að

0 = det
(
Â− λÎ

)
= det

−λ a 0
a −λ a

0 a −λ

 = −λ
∣∣∣∣∣−λ a

a −λ

∣∣∣∣∣− a

∣∣∣∣∣a a

0 −λ

∣∣∣∣∣ = −λ(λ−
√

2a)(λ+
√

2a) ,

Þannig að hugsanleg mæligildi eru λ = 0 eða λ = ±
√

2a. Við athugum svo næst hverjir
eiginvigrar Â eru.

Fyrir λ = 0:

0
0
0

 =

−λ a 0
a −λ a

0 a −λ


vxvy
vz

 =

 avy
avx + avz

avy

 (6.2)

sem gefur því að

|a2⟩ = 1√
2

 1
0

−1

 = 1√
2

(|h1⟩ − |h3⟩) . (6.3)

þar sem |h1⟩ , |h2⟩ og |h3⟩ eru eiginvigrar Hamilton-virkjans Ĥ með tilheyrandi eigingildi
E1 = +ℏω,E2 = 0 og E3 = −ℏω. Eins fæst að

Fyrir λ = −
√

2a: |a1⟩ = 1
2

 1
−

√
2

1

 = 1
2
(
|h1⟩ −

√
2 |h2⟩ + |h3⟩

)
, (6.4)

Fyrir λ = +
√

2a: |a3⟩ = 1
2

 1√
2

1

 = 1
2
(
|h1⟩ +

√
2 |h2⟩ + |h3⟩

)
, (6.5)
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(aii) Þar sem að eiginvigrar Â eru línuleg samantekt eiginvigra Ĥ (en ekki sameiginlegir
eiginvigrar) þá er ekki unnt að segja til með fullri vissu fyrir um niðurstöðu mælinga á bæði
Â og orku kerfisins. Önnur leið til að sýna það er að athuga að virkjarnir víxlast ekki:

[
Â, Ĥ

]
= ÂĤ − ĤÂ = aℏω

0 1 0
1 0 −1
0 −1 0

 ̸= 0̂. (6.6)

(b) Stærsta mæligildið er +
√

2a svo að kerfið er þá við tíma t = 0 í ástandinu

|s0⟩ = 1
2
(
|h1⟩ +

√
2 |h2⟩ + |h3⟩

)
, (6.7)

Þegar að við tímaþróum þá margföldum við eiginástönd Hamilton-virkjans með e−iEnt/ℏ og
fáum því hér

|s(t)⟩ = 1
2
(
e−iωt |h1⟩ +

√
2 |h2⟩ + eiωt |h3⟩

)
= e−iωt

2

1
0
0

+ 1√
2

0
1
0

+ eiωt

2

0
0
1

 , (6.8)

Skoðum nú ofanvarpsvirkjan á staðlaða ástandið |s0⟩ sem er skilgreindur þannig að

P|s0⟩ = |s0⟩ ⟨s0| . (6.9)

Þá eru líkurnar á því að finna kerfið í ástandinu |s0⟩ gefnar með∣∣∣P|s0⟩ |s(t)⟩
∣∣∣2 = ||s0⟩ ⟨s0|s(t)⟩|2 = |⟨s0|s(t)⟩|2 . (6.10)

Þar sem við notuðum að |⟨s0|s0⟩| = 1. En við athugum að

⟨s0|s(t)⟩ = 1
4
(
eiωt + 2 + eiωt

)
= 1

2 (1 + cos(ωt)) . (6.11)

En þar með eru líkurnar 1
4(1 + cos(ωt))2. Við getum teiknað graf sem sýnir líkurnar á því að

finna ögnina í ástandinu |s0⟩ sem fall af tíma.

π
ω

2π
ω

1

t

P (t)
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Dæmi 12. Ástand hreintóna sveifils sem uppfyllir

â−ψα(x) = αψα(x) , (6.12)

þar sem â− er lækkunarvirkinn og α ∈ C er fasti, kallast samfasa ástand.

(a) Reiknið væntigildi staðsetningarvirkjans X̂ og skriðþungavirkjans P̂ í stöðluðu
samfasa ástandi ψα(x).

(b) Reiknið víxlana [â−, (â+)n] og
[
â−, e

αâ+
]

fyrir heiltölu n og fasta α.

(c) Sýnið að ástandið eαâ+ψ0(x), þar sem ψ0(x) lýsir grunnástandi sveifilsins, sé sam-
fasa ástand.

Lausn: (a) Við höfum að

â± := 1√
2ℏmω

(∓ip̂+mωx̂) (6.13)

Með því að leggja saman fæst því að

x̂ =
√

ℏ
2mω (â+ + â−) . (6.14)

Eins fæst með því að draga frá að

p̂ = i

√
ℏmω

2 (â+ − â−) , (6.15)

Athugum svo að þar eð â− |ψα⟩ = α |ψα⟩ þá er ⟨ψα| â+ = ⟨ψα|α∗. Fáum því

⟨ψα|x̂|ψα⟩ = ⟨ψα|

√
ℏ

2mω (â+ + â−)|ψα⟩ =
√

ℏ
2mω (α∗ + α) =

√
2ℏ
mω

Re(α), (6.16)

⟨ψα|p̂|ψα⟩ = ⟨ψα|i

√
ℏmω

2 |ψα⟩ = i

√
ℏmω

2 (α∗ − α) =
√

2ℏmω Im(α) . (6.17)

(bi) Fáum þá með þrepun að fyrst er [â−, â+] = Î og svo[
â−, (â+)n+1

]
= â+[â−, (â+)n] + [â−, â+](â+)n = (n+ 1)(â+)n (6.18)

þar sem að við notuðum þrepunarforsenduna [â−, (â+)n] = nân−1
+ .

(bii) Nú er
[
â−, e

αâ+
]

=
[
â−,

∞∑
n=0

(αâ+)n
n!

]
=
∑
n=0

αnnân+
n! = αeαâ+ . (6.19)

(c) Fáum þá

â−
(
eαâ+ψ0

)
=
(
eαâ+ â− + αeαâ+

)
ψ0 = αeαâ+ψ0 = α

(
eαâ+ψ0

)
. (6.20)
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7 Heimadæmi 9. október

Dæmi 13. Klukkan t = 0 er rúmbylgjufall vetnisfrumeindar

Ψ(r⃗, 0) = 1√
3

(ψ100(r⃗) +
√

2ψ211(r⃗)) , (7.1)

þar sem ψnℓm(r⃗) eru stöðluð sameiginleg eiginföll Ĥ, L̂2 og L̂z.

(a) Hvaða mæligildi koma til greina fyrir orkuna og fyrir L̂2 í þessu ástandi?
(b) Reiknið væntigildi mælistærðanna L̂z og X̂ klukkan t = 0.
(c) Hvernig breytast væntigildi L̂z og X̂ með tíma?

Lausn: (a) Nú eru hugsanleg mæligildi á orkunni En = E1
n2 þar sem E1 = −13,6 eV. Hér

höfum við annað hvort n = 1 eða n = 2 svo hugsanleg gildi eru E1 = −13,6 eV með líkum
1
3 og E2 = −3,4 eV með líkum 2

3 . Mæling á L̂2 gefur síðan ℓ(ℓ + 1)ℏ2 svo hér eru hugsanleg
mæligildi 0 með líkum 1

3 og 2ℏ2 með líkum 2
3 . Loks gæfi mæling á L̂z hugsanleg mæligildi mℏ

en hér væri það þá 0 með líkum 1
3 og ℏ með líkum 2

3 .

(c) Tímaþróun á bylgjufallinu er þannig að

Ψ(r⃗, t) = 1√
3

(
ψ100(r⃗)e−iE1t/ℏ +

√
2ψ211(r⃗)e−iE2t/ℏ

)
. (7.2)

En þá verður væntigildið á z-þátt hverfiþungans

⟨Ψ(r⃗, t)|L̂z|Ψ(r⃗, t)⟩ =
〈

Ψ(r⃗, t)
∣∣∣∣∣ℏ
√

2
3ψ211(r⃗)e−iE2t/ℏ

〉
= 2

3ℏ . (7.3)

Sem er óháð tíma. Almennt gildir síðan að ⟨ψnℓm|X̂|ψnℓm⟩ = 0. Það þýðir að hér fáum við

⟨Ψ(r⃗, t)|X̂|Ψ(r⃗, t)⟩ = 1
3 ⟨ψ100|X̂|ψ100⟩ + 2

3 ⟨ψ211|X̂|ψ211⟩

+
√

2
3 ⟨ψ100|X̂|ψ211⟩ ei(E1−E2)t/ℏ +

√
2

3 ⟨ψ211|X̂|ψ100⟩ e−i(E1−E2)t/ℏ

Hér eru bylgjuföllin sem um ræðir almennt gefin með ψnℓm = RnℓY
m
ℓ (sjá töflur 4.7. og 4.3.)

ψ100(r⃗) = 1√
πa3

e−r/a , ψ211(r⃗) = − 1√
πa3

r

8ae
−r/2a sin θeiϕ . (7.4)

Í kúluhnitum er síðan x = r sin θ cosϕ og eftir að við margföldum með Jackobi-ákveðunni þá
fáum við að eina tegrið sem þarf að reikna er

⟨ψ100|X̂|ψ211⟩ = − 1
8πa4

∫ ∞

0
dr

∫ π

0
dθ

∫ 2π

0
dϕ

(
r2 sin θ

)
r sin θe−3r/2aeiϕ (r sin θ cosϕ)

= − 1
8πa4

(∫ ∞

0
r4e−3r/2adr

)(∫ π

0
sin3 θdθ

)
·
(∫ 2π

0
eiϕ cosϕdϕ

)
(7.5)

= − 1
8πa4 · (4

3)4a5 · 4
3 · π = −128

243a .

En þar með er ⟨X̂⟩(t) = −256
√

2 a
729 cos

(
E1−E2

ℏ t
)

.
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Dæmi 14. Ögn hreyfist í þrívíðum einsátta hreintóna sveifil með mætti V (r) = 1
2mω

2r2.

(a) Notið aðskilnað breytistærða í Kartesarhnitum til að sýna að orka sveifilsins sé
En = ℏω(n+ 3

2) þar sem n ∈ Z+ og að margfeldni En sé d(n) = 1
2(n+ 1)(n+ 2).

(b) Mættið V (r) er kúlusamhverft þ.a. finna má sameiginleg eiginástönd Ĥ, L̂2 og L̂z.
Sýnið að rétt margfeldni fæst fyrir En ef við g.r.f.a. eigingildi L̂2 séu ℓ(ℓ + 1)ℏ2

þar sem ℓ ∈ {0, 2, . . . , n} ef n er slétt tala en ℓ ∈ {1, 3, . . . , n} ef n er oddatala.

Lausn: (a) Höfum Schrödinger-jöfnuna

iℏ∂tΨ = − ℏ2

2m∇⃗2Ψ + V (r)Ψ , (7.6)

Notum aðskilnað breytistærða í Kartesarhnitum Ψ(t, x, y, z) = f(t)X(x)Y (y)Z(z) og fáum

iℏf ′XY Z = −ℏ2f

2m
(
X ′′Y Z +XY ′′Z +XY Z ′′)+ 1

2mω
2
(
x2 + y2 + z2

)
fXY Z , (7.7)

En eftir að við deilum í gegn með fXY Z ályktum við að

iℏ
f ′

f
= − ℏ2

2m

(
X ′′

X
+ Y ′′

Y
+ Z ′′

Z

)
+ 1

2mω
2(x2 + y2 + z2) (7.8)

En þar með höfum við fengið iℏf ′(t) = Ef(t) með E = Ex + Ey + Ez þar sem að Ex, Ey og
Ez samsvara orkugildum á þremur einvíðum hreintóna sveiflum með afleiðujöfnur

− ℏ2

2mX ′′(x) + 1
2mω

2x2X(x) = ExX(x) , (7.9)

og eins fyrir Y (y) og Z(z). Fyrir hvern einvíðan kjörsveifil höfum við því Ei = (ni + 1
2)ℏω

þar sem ni ∈ {0, 1, 2, . . .}. Þar með eru orkugildi sveiflsins gefin með En = Ex + Ey + Ez =(
(nx + ny + nz) + 3

2

)
ℏω. Snúum okkur śiðan að margfeldninni. Festum gildið á n og nz ≤ n.

Þá má velja nx á n + 1 − nz vegu (því 0 er hugsanlegt gildi). Þá ákvarðast ny ótvírætt af
valinu á nx svo heildarfjöldi möguleika er þá gefinn með margfeldinni

d(n) =
n∑

nz=0
(n+ 1 − nz) = (n+ 1)(n+ 1) −

n∑
nz

nz = (n+ 1)(n+ 1) − (n+ 1)n
2 = 1

2(n+ 1)(n+ 2) .

(b) Látum nú n = 2k vera slétta tölu. Ef við gerum ráð fyrir að eigingildi L̂2 séu ℓ ∈
{0, 2, . . . , n} þá eru þau k+1 talsins. Fyrir hvert ℓ = 2s má śiðan finna 2ℓ+1 = 4s+1 eigingildi
sem samsvara eigingildum L̂z, þ.e. m ∈ {−ℓ,−ℓ+ 1, . . . , ℓ− 1, ℓ}. En þá er margfeldnin

d(n) =
k∑
s=0

(4s+ 1) = (k + 1) + 4 · (k + 1)k
2 = (k + 1)(2k + 1) = 1

2(n+ 1)(n+ 2) . (7.10)

Ef n = 2k + 1 er oddatala og eigingildi L̂2 eru ℓ ∈ {1, 3, . . . n} þá eru þau k + 1 talsins. Fyrir
hvert ℓ = 2s + 1 fyrir s ∈ {0, . . . , k} má síðan finna 2ℓ + 1 = 4s + 3 eigingildi sem samsvara
L̂z þannig að margfeldnin verður

d(n) =
k∑
s=0

(4s+ 3) = (k + 1)(2k + 3) = 1
2(n+ 1)(n+ 2) . (7.11)
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8 Heimadæmi 16. október

Dæmi 15. Tvær eins agnir með massa m hreyfast í einni vídd í mættinu

V (x) = 1
2mω

2x2 . (8.1)

Agnirnar eru án spuna og víxlverka ekki innbyrðis.

(a) i. Finnið orku grunnástandsins og tilsvarandi staðlað eiginfall ψ(x1, x2) ef agn-
irnar eru bóseindir.

ii. Reiknið líkurnar á að báðar agnirnar séu sömu megin við x = 0 í grunnástand-
inu.

(b) Endurtakið sömu útreikninga og í (a)-lið ef agnirnar eru fermíeindir.

Lausn: Þar sem að agnirnar víxlverka ekki innbyrðis þá eru hugsanleg eiginföll gefin
með ψ(x1, x2) = ψna(x1)ψnb

(x2) þar sem ψn(x) eru eiginföll einvíða kjörsveifilsins. Orka
eiginástandanna er þá E = (na + nb + 1)ℏω og na, nb ∈ N.

(a) Fyrir bóseindir þarf bylgjufallið að vera samhverft en þá er orkulægsta ástandið

ψ+(x1, x2) = A+ψ0(x1)ψ0(x2) , (8.2)

með orku ℏω þar sem að A+ er stöðlunarfasti sem ákvarðast af skilyrðinu

1 =
∫ +∞

−∞
dx1

∫ +∞

−∞
dx2|ψ+(x1, x2)|2 = A2

+

(∫ +∞

−∞
|ψ0(x1)|2dx1

)(∫ +∞

−∞
|ψ0(x2)|2dx2

)
= A2

+

(8.3)

svo A+ = 1. En þar með fæst að líkurnar á því að agnirnar séu sömu megin eru gefnar með

p+ =
∫ +∞

0
dx1

∫ +∞

0
dx2 |ψ+(x1, x2)|2 +

∫ 0

−∞
dx1

∫ 0

−∞
dx2 |ψ+(x1, x2)|2

=
(∫ +∞

0
|ψ0(x1)|2 dx1

)(∫ +∞

0
|ψ0(x2)|2 dx2

)
+
(∫ 0

−∞
|ψ0(x1)|2 dx1

)(∫ 0

−∞
|ψ0(x2)|2 dx2

)
= 1

2 · 1
2 + 1

2 · 1
2 = 1

2 .

þar sem að við notuðum að grunnástand einvíða kjörsveifilsins er jafnstætt um x = 0.
(b) Fyrir fermíeindir er

ψ−(x1, x2) = A
(
ψ0(x1)ψ1(x2) − ψ1(x1)ψ0(x2)

)
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með orku 2ℏω og við fáum að

1 =
∫ +∞

−∞
dx1

∫ +∞

−∞
dx2 |Ψt(x1, x2)|2

= A2
∫
dx1 dx2

[
ψ∗

0(x1)ψ∗
1(x2) − ψ∗

1(x1)ψ∗
0(x2)

][
ψ0(x1)ψ1(x2) − ψ1(x1)ψ0(x2)

]
= A2

∫
dx1 dx2

[
|ψ0(x1)|2|ψ1(x2)|2 + |ψ1(x1)|2|ψ0(x2)|2

− ψ∗
0(x1)ψ1(x1)ψ∗

1(x2)ψ0(x2) − ψ∗
1(x1)ψ0(x1)ψ∗

0(x2)ψ1(x2)
]

= A2
[
⟨ψ0, ψ0⟩⟨ψ1, ψ1⟩︸ ︷︷ ︸

=1

+ ⟨ψ1, ψ1⟩⟨ψ0, ψ0⟩︸ ︷︷ ︸
=1

− ⟨ψ0, ψ1⟩⟨ψ1, ψ0⟩︸ ︷︷ ︸
=0

− ⟨ψ1, ψ0⟩⟨ψ0, ψ1⟩︸ ︷︷ ︸
=0

]
= 2A2

þannig að A = 1√
2 og við finnum að

p− =
∫ +∞

0
dx1

∫ +∞

0
dx2 |ψ−(x1, x2)|2 +

∫ 0

−∞
dx1

∫ 0

−∞
dx2 |ψ−(x1, x2)|2

= 1
2

∫ +∞

0
dx1

∫ +∞

0
dx2

[
|ψ0(x1)|2|ψ1(x2)|2 + |ψ1(x1)|2|ψ0(x2)|2

− ψ0(x1)ψ1(x1)ψ1(x2)ψ0(x2) − ψ1(x1)ψ0(x1)ψ0(x2)ψ1(x2)
]

+ 1
2

∫ 0

−∞
dx1

∫ 0

−∞
dx2

[
|ψ0(x1)|2|ψ1(x2)|2 + |ψ1(x1)|2|ψ0(x2)|2

− ψ0(x1)ψ1(x1)ψ1(x2)ψ0(x2) − ψ1(x1)ψ0(x1)ψ0(x2)ψ1(x2)
]
.

En við athugum að ∫ +∞

0
|ψ0(x)|2dx =

∫ +∞

0
|ψ1(x)|2dx = 1

2 ,

og ∫ +∞

0
ψ0(x)ψ1(x)dx = 1√

2π ,

∫ 0

−∞
ψ0(x)ψ1(x)dx = − 1√

2π .

þar sem að

ψ0(x) =
(
mω

πℏ

)1/4
e− mω

2ℏ x
2
, ψ1(x) =

(
mω

πℏ

)1/4√2mω
ℏ

xe− mω
2ℏ x

2
. (8.4)

Því fæst:

p− = 1
2

[
1
2 · 1

2 + 1
2 · 1

2 − 1√
2π · 1√

2π − 1√
2π · 1√

2π

]
+ 1

2

[
1
2 · 1

2 + 1
2 · 1

2 −
(
− 1√

2π
)(

− 1√
2π
)

−
(
− 1√

2π
)(

− 1√
2π
)]

= 1
2 − 1

π ≈ 0,182.
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Dæmi 16. Tvær agnir með spuna s = 1 og snúðhlutfall γ eru í segulsviði með styrk B0 í stefnu
z-áss. Hvaða orkueigingildi eru leyfileg og hver er margfeldni hvers um sig ef þetta eru

(a) aðgreinanlegar agnir (b) eins bóseindir (c) eins fermíeindir.

Lausn: Fyrir eina ögn þá er Hamilton-virki kerfisins Ĥ = −γB⃗ · S⃗ = −γB0Sz þar sem

fyrir spunatölu s = 1 við höfum að Ŝz = ℏ

1 0 0
0 0 0
0 0 −1

. Eiginvigrar Ĥ eru því eiginvigrar Ŝz,

nefnilega |1⟩ =
( 1

0
0

)
, |0⟩ =

( 0
1
0

)
og |−1⟩ =

( 0
0
1

)
með eigingildi −γB0ℏ, 0 og +γB0ℏ (í þessari

röð). Þetta má þá skrifa sem Ŝz |m⟩ = mℏ |m⟩. Þegar við skoðum tveggja agna kerfi þá er
Hamilton-virkinn

Ĥ = −γB0
(
Ŝ1,z + Ŝ2,z

)
, (8.5)

Eiginástöndin eru þá |m1,m2⟩ þar sem að

Ĥ |m1,m2⟩ = −γB0ℏ(m1 +m2) (8.6)

Þar sem að m1,m2 ∈ {−1, 0, 1} þá eru hugsanleg gildi sem koma til greina á orkunni

−2γB0ℏ , −γB0ℏ , 0 , +γB0ℏ , +2γB0ℏ . (8.7)

(a) Fyrir aðgreinanlegar agnir eru hugsanleg eiginástönd þá

Ástand |−1,−1⟩ |−1, 0⟩ |−1, 1⟩ |0,−1⟩ |0, 0⟩ |0, 1⟩ |1,−1⟩ |1, 0⟩ |1, 1⟩
Orka 2γB0ℏ γB0ℏ 0 γB0ℏ 0 −γB0ℏ 0 −γB0ℏ −2γB0ℏ

Margfeldni ástandanna er þá (1, 2, 3, 2, 1) í stærðarröð eftir orku eigingildanna.

(b) Fyrir bóseindir eru ástöndin samhverf þ.a. |ψ+⟩ = A+ (|m1,m2⟩ + |m2,m1⟩) og því
Ástand |−1,−1⟩ |0, 0⟩ |1, 1⟩ 1√

2(|−1, 0⟩ + |0,−1⟩) 1√
2(|−1, 1⟩ + |1,−1⟩) 1√

2(|0, 1⟩ + |1, 0⟩)
Orka 2γB0ℏ 0 −2γB0ℏ γB0ℏ 0 −γB0ℏ

Margfeldni ástandanna er þá (1, 1, 2, 1, 1) í stærðarröð eftir orku eigingildanna.

(c) Fyrir fermíeindir eru ástöndin andsamhverf þ.a. |ψ−⟩ = A− (|m1,m2⟩ − |m2,m1⟩)

Ástand 1√
2(|−1, 0⟩ − |0,−1⟩) 1√

2(|−1, 1⟩ − |1,−1⟩) 1√
2(|0, 1⟩ − |1, 0⟩)

Orka γB0ℏ 0 −γB0ℏ

Margfeldni ástandanna er þá (0, 1, 1, 1, 0) í stærðarröð eftir orku eigingildanna.
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9 Heimadæmi 23. október

Dæmi 17. Í einföldu líkani sem lýsir hvítri dvergstjörnu eru rafeindirnar meðhöndlaðar sem frjálst
Fermígas. Dæmigerður hraði rafeinda er hinsvegar það mikill að við gerum ráð fyrir að
tengsl orku og ölduvigurs séu ω(k⃗) = c

∣∣∣⃗k∣∣∣ í stað ω(k⃗) = ℏk2

2m .

(a) Ákvarðið ástandsþéttleika rafeindanna í þessu líkani.
(b) Reiknið Fermíorku rafeindanna EF við T = 0.
(c) Finnið hlutfallið ⟨E⟩/EF þar sem ⟨E⟩ er meðalorka rafeindanna í gasinu við T = 0.

Lausn: (a) Við höfum þá að∫
G(E) dE = Nd = 2 · V

(2π)3

∫
d3k = V

π2

∫
dk k2 (9.1)

En þá fæst með breytiskiptum almenna formúlan (sem gildir í þremur víddum) fyrir ástands-
þéttleikanum (e. DOS Density Of States)

G(E) = V

π2
k(E)2

dE
dk

, (9.2)

Hér athugum við að E = ℏω(k) = ℏck þar sem k =
∣∣∣⃗k∣∣∣ svo k = E/(ℏc) þ.a.

G(E) = V

π2
E2/(ℏc)2

ℏc
= V

π2
E2

(ℏc)3 . (9.3)

(b) Fermíorkan er orka orkuhæsta ástandsins (að frádreginni orku grunnástandsins) og
er fundin með því að tegra ástandsþéttleikan upp í EF

Nd =
∫ EF

0
G(E)dE = V

3π2
E3
F

(ℏc)3 (9.4)

Með því að leysa fyrir EF og skilgreina ρ = Nd
V fæst því

EF = ℏc(3π2ρ)1/3 . (9.5)

(c) En þá má reikna meðalorkuna samkvæmt

⟨E⟩ = 1
Nd

∫ EF

0
EG(E) dE = 1

4π2ρ

E4
F

(ℏc)3 . (9.6)

Sem gefur því að

η = ⟨E⟩
EF

= 1
4π2ρ

E3
F

(ℏc)3 = 3
4 . (9.7)
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Dæmi 18. Einvítt skammtakerfi hefur Hamiltonvirkja Ĥ = Ĥ0 + λĤ ′ þar sem

Ĥ0 = P̂ 2

2m + 1
2mω

2X̂2 , Ĥ ′ =
√

2ℏmω3X̂ , (9.8)

og λ ≪ 1 er fasti.

(a) Reiknið 2. stigs nálgun við orku grunnástandsins með truflanareikningi fyrir sístæð
ástönd.

(b) Ákvarðið 1. stigs nálgun við eiginfall grunnástandsins miðað við grunn eiginfalla
ótruflaða Hamiltonvirkjans Ĥ0.

(c) Færið rök fyrir því að nálgunin í (a)-lið gefi í raun nákvæma orku grunnástandsins.

Lausn: (a) Nú eru orkugildi ótruflaða ástandsins E(0)
n = ℏω(n+ 1

2) og grunnástandið er
|ψ0⟩. Þar sem að þetta er einvítt skammtakerfi er engin margfeldni sem við þurfum að hafa
áhyggjur af. Almennt má þá reikna fyrsta stigs leiðréttingu í orku grunnástandsins sem

E(1)
n =

〈
ψ(0)
n

∣∣∣Ĥ ′
∣∣∣ψ(0)
n

〉
(9.9)

Því fæst að fyrsta stigs leiðrétting við orku grunnástandsins má reikna samkvæmt

E
(1)
0 =

〈
ψ

(0)
0

∣∣∣Ĥ ′
∣∣∣ψ(0)

0

〉
(9.10)

En hér er því best að umrita X̂ sem fall af hækkunar og lækkunarvirkjunum þannig að

â± = 1√
2ℏmω

(
∓iP̂ +mωX̂

)
(9.11)

En þá er X̂ =
√

ℏ
2mω (â+ + â−). En því er

Ĥ ′ =
√

2ℏmω3X̂ = ℏω (â+ + â−) (9.12)

sem gefur að

E
(1)
0 =

〈
ψ

(0)
0

∣∣∣Ĥ ′
∣∣∣ψ(0)

0

〉
= ℏω ⟨ψ0|â+ + â−|ψ0⟩ = ℏω ( ⟨ψ0|â+|ψ0⟩ + ⟨ψ0|â−|ψ0⟩) = 0 .

þar sem að við notuðum að ⟨ψ0|ψ1⟩ = 0 og að â− |ψ0⟩ = 0. Athugum þá næst að 2. stigs
leiðréttinguna má reikna samkvæmt

E(2)
n =

∑
m̸=n

∣∣∣ ⟨ψm|Ĥ ′|ψn⟩
∣∣∣2

En − Em
, (9.13)

Fyrir n = 0 þá höfum við að E0 − Em = 1
2ℏω − ℏω

(
m+ 1

2

)
= −ℏωm. Svo er ⟨ψm|Ĥ ′|ψ0⟩ =

ℏω ⟨ψm|ψ1⟩ = ℏωδm,1 svo við fáum

E
(2)
0 = −ℏω

∑
m ̸=0

δm,1
m

= −ℏω . (9.14)
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(b) Þá er almennt
∣∣∣ψ(1)

n

〉
= ∑

m ̸=n
⟨ψm|Ĥ′|ψn⟩
En−Em

ψ
(0)
m þannig að hér fáum við

∣∣∣ψ(1)
0

〉
=
∑
m ̸=0

⟨ψm|Ĥ ′|ψ0⟩
E0 − Em

ψ(0)
m = −

∑
m̸=0

δm,1
m

ψ(0)
m = −ψ(0)

1 . (9.15)

(c) Fyllum í ferninginn og fáum að

1
2mω

2X̂2 + λ
√

2ℏmω3X̂ = 1
2mω

2

X̂2 + λ

√
2ℏ
mω

2

− ℏωλ2 (9.16)

Með því að skilgreina Ŷ = X̂ + λ
√

2ℏ
mω og athuga að ∂X = ∂Y þá sést að þetta er hliðraður

kjörsveifill með Hamilton-virkja

Ĥ = P̂ 2

2m + 1
2mω

2Ŷ 2 − ℏωλ2 . (9.17)

En þar með verða orkugildin fyrir þennan kjörsveifil gefin með

En = ℏω(n+ 1
2 − λ2) (9.18)

svo að þetta er stýfð röð (e. truncated series).
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10 Heimadæmi 30. október

Dæmi 19. Spunalaus ögn með massa m er í tvívíðum óendanlega djúpum mættisbrunni,

V̂0(x, y) =

0 ef x, y ∈ [0, a] ,
∞ annars .

(10.1)

(a) Finnið litróf Hamiltonvirkjans. Hver er margfeldni þriggja lægstu eigingildanna?
(b) Notið fyrsta stigs truflanareikning til að ákvarða hvernig margfeldni fyrsta örvaða

ástands rofnar þegar truflun V̂1(x, y) = λ(x− a
2 )(y − a

2 ) er bætt við mættið.

Lausn: (a) Fyrir óendanlegan mættisbrunn í einni vídd eru orkueigingildin Ex = ℏ2π2n2
x

2ma2

þannig að fyrir óendanlegan mættisbrunn í tveimur víddum eru orkueigingildin

E(nx, ny) = Ex + Ey = ℏ2π2

2ma2 (n2
x + n2

y) með nx, ny ∈ Z+. (10.2)

Þá eru þrjú orkulægstu ástöndin gefin með E(1, 1), E(2, 1) = E(1, 2) og E(2, 2).
(b) Til að meta hvernig orkan rofnar þá skoðum við fylkjastökin Wij = ⟨ψ(0)

i |V1|ψ(0)
j ⟩ þar

sem i, j = (1, 2) eða (2, 1). Hér höfum við ekki hækkunar- og lækkunarvirkja til að einfalda
lífið okkar, en bylgjuföllin eru hinsvegar þekkt og gefin með margfeldi einvíðu eiginfallanna

ψnx,ny (x, y) = ψnx(x)ψny (y) = 2
a

sin
(
nxπx

a

)
sin
(
nyπy

a

)
. (10.3)

Með því að nýta eiginleika einvíðu bylgjufallanna, þ.e. að ⟨ψn|ψm⟩ = δnm og ⟨ψn|x|ψn⟩ = a
2 .

Eina nýja heildið sem að við þurfum að reikna til að leysa þetta dæmi er

⟨ψ2|x|ψ1⟩ = 2
a

∫ a

0
sin
(2πx

a

)
x sin

(
πx

a

)
= −16a

9π2 . (10.4)

Þar með höfum við allt sem við þurfum til að reikna fylkjastökin. Athugum fyrst að

W(1,2),(1,2) =
〈
ψ

(0)
(1,2)

∣∣∣(x− a
2 )(y − a

2 )
∣∣∣ψ(0)

(1,2)

〉
=
〈
ψ

(0)
1

∣∣∣x− a
2

∣∣∣ψ(0)
1

〉 〈
ψ

(0)
2

∣∣∣y − a
2

∣∣∣ψ(0)
2

〉
= 0 .

(10.5)
Eins fæst að W(2,1),(2,1) = 0. Loks er

W(1,2),(2,1) =
〈
ψ

(0)
(1,2)

∣∣∣(x− a
2 )(y − a

2 )
∣∣∣ψ(0)

(2,1)

〉
(10.6)

=
〈
ψ

(0)
1

∣∣∣x− a
2

∣∣∣ψ(0)
2

〉 〈
ψ

(0)
2

∣∣∣y − a
2

∣∣∣ψ(0)
1

〉
(10.7)

=
(

−16a
9π2

)(
−16a

9π2

)
= 256a2

81π4 = W(2,1),(1,2) . (10.8)

En þá þurfum við að ákvarða eigingildi fylkisins

0 = det

−E(1)
2

256a2

81π4

256a2

81π4 −E(1)
2

 =⇒ E
(1)
2 = ± 16

9π2a . (10.9)

Svo orkueigingildin rofna samkvæmt E2 = E
(0)
2 + λE

(1)
2 = 5ℏ2π2

2ma2 ± λ256a2

81π4 .
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Dæmi 20. Tvívíður sveifill hefur Hamiltonvirkja Ĥ = Ĥ0 + Ĥ ′ með,

Ĥ0 = 1
2m

(
P̂ 2
x + P̂ 2

y

)
+ 1

2mω
2
(
X̂2 + Ŷ 2

)
, Ĥ ′ = λmω2

(
X̂2 − Ŷ 2

)
, (10.10)

þar sem λ > 0 er fasti. Ef λ ≪ 1 má líta á Ĥ ′ sem truflun.

(a) Hvert er róf ótruflaða Hamiltonvirkjans Ĥ0 og margfeldni hvers eigingildis um sig?
(b) Reiknið 2. stigs nálgun við orku grunnástandsins Ĥ með truflanareikningi.
(c) Ákvarðið klofnun fyrsta örvaða ástands Ĥ0 af völdum Ĥ ′ með 1. stigs truflana-

reikningi fyrir ástönd með margfeldni.
(d) Reikni nákvkæm orkueigingildi kerfisins og berið orku grunnástandsins saman við

niðurstöðuna í (b)-lið.

Lausn: Við byrjum aðeins í öfugri röð.
(d) Við athugum að með því að skilgreina 1

2mω
2
x = 1

2mω
2 + λmω2 = 1

2mω
2(1 + 2λ) og

1
2mω

2
y = 1

2mω
2 − λmω2 = 1

2mω
2(1 − 2λ) þá fæst einfaldlega að orkueigingildin verða

E(nx, ny) = ℏωx
(
nx + 1

2

)
+ ℏωy

(
ny + 1

2

)
= ℏω

√
1 + 2λ

(
nx + 1

2

)
+ ℏω

√
1 − 2λ

(
ny + 1

2

)
≈ ℏω(1 + nx + ny) + λℏω(nx − ny) − 1

2(1 + nx + ny)ωℏλ2 + O(λ3)

(10.11)

Af þessu sést að það verður klofnun í ±2λℏω fyrir (nx, ny) = (1, 0) og (nx, ny) = (0, 1).
(a) Að því sögðu þá er orkuróf ótruflaða Hamilton-virkjans gefið með:

E0(nx, ny) = ℏω(1 + nx + ny) , (10.12)

og margfeldnin ákvaðrast af N = nx+ny. Við sjáum að fyrir fast N má velja nx á N+1 vegu
(og ny ákvarðast ótvírætt sem N−nx) svo fyrir N er margfeldnin N+1. Grunnástandið N = 0
er því eina ástandið sem er ekki með margfeldni. Fyrsta örvaða ástandið hefur margfeldni 2.

(b) Fáum þar sem að grunnástandið er ekki með margfeldni að

E
(1)
0 = ⟨ψ(0)

00 |Ĥ ′|ψ(0)
00 ⟩ = λmω2[⟨ψ(0)

0 |X2|ψ(0)
0 ⟩ − ⟨ψ(0)

0 |Y 2|ψ(0)
0 ⟩

]
= 0. (10.13)

Sem stemmir miðað við (d)-lið. Eins fæst að

E
(2)
0 =

∑
(nx,ny )̸=(0,0)

|⟨ψ(0)
nx,ny |λmω2(X2 − Y 2)|ψ(0)

00 ⟩|2

E
(0)
0 − E

(0)
nx,ny

. (10.14)

En við athugum að stakur liður í summunni hefur

λmω2
[
⟨ψ(0)

nx
|X2|ψ(0)

0 ⟩⟨ψ(0)
ny

|ψ(0)
0 ⟩ − ⟨ψ(0)

ny
|Y 2|ψ(0)

0 ⟩⟨ψ(0)
nx

|ψ(0)
0 ⟩

]
(10.15)
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Umritum nú með hækkunar- og lækkunarvirkjum þannig að

X̂2 = ℏ
2mω (â+ + â−)2 , Ŷ 2 = ℏ

2mω (b̂+ + b̂−)2 , (10.16)

og eins fyrir X̂. Við sjáum þá að liðirnir verða

1
2λℏω

[√
2δnx,2 δny ,0 −

√
2δny ,2 δnx,0

]
(10.17)

En einungis annar þessara liða getu rkomið fyrir í einu og við þurfum að reikna lengdina í
öðru, því veita hvor um sig jafnt framlag og við fáum

E
(2)
0 =

2(
√

2 · 1
2λℏω)2

ℏω − 3ℏω = −1
2ℏωλ

2 (10.18)

sem stemmir við niðurstöðuna sem við fengum í (d)-lið.
(c) Til að skoða klofnun þá skulum við skrifa fylkið

Wij =

W(0,1),(0,1) W(1,0),(0,1)

W(0,1),(1,0) W(1,0),(1,0)

 , með Wij = ⟨ψ(0)
i |Ĥ ′|ψ(0)

j ⟩. (10.19)

Við athugum þá að fylkjastökin eru

W(0,1),(1,0) = λmω2[⟨ψ(0)
0 |X̂2|ψ(0)

1 ⟩ − ⟨ψ(0)
1 |Ŷ 2|ψ(0)

0 ⟩
]
. (10.20)

Við sáum áðan að

X̂2 = ℏ
2mω (â+â− + â−â+ + â2

+ + â2
−), (10.21)

en þar með fáum við að ⟨ψ(0)
0 |X̂2|ψ(0)

0 ⟩ = ℏ
2mω og ⟨ψ(0)

1 |Ŷ 2|ψ(0)
1 ⟩ = ℏ

2mω (2 + 1), sem gefur því

W(0,1),(1,0) = −λℏω . (10.22)

Svo má með sama hætti sýna að W(1,0),(1,0) = +λℏω. Stökin sem eru ekki á hornalínunni
hverfa síðan

W(0,1),(0,1) = ⟨ψ(0)
(0,1)|Ĥ

′|ψ(0)
(0,1)⟩ = 0 (10.23)

og eins er W(1,0),(1,0) = 0, þar sem að
〈
ψ

(0)
0

∣∣∣ψ(0)
1

〉
= 0. Þar með er eigingildisverkefnið

det

−λℏω − E
(1)
1 0

0 +λℏω − E
(1)
1

 = 0. (10.24)

Þar með fáum við að E(1)
1 = ±λℏω sem er einmitt það sem sést í (d)-lið.
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11 Heimadæmi 6. nóvember

Dæmi 21. Ögn með massa m hreyfist í einni vídd í mættinu V (x) = α|x|, þar sem α > 0 er fasti.
Sýnið að um orku grunnástandsins gildi að

E0 ≤ 15
16

(
ℏ2α2

m

)1/3

(11.1)

með því að nota hnikun yfir föll af gerðinni

ψa(x) =

a2 − x2 ef |x| ≤ a ,
0 ef |x| > a .

(11.2)

Lausn: Við byrjum á því að staðla bylgjufallið ψa en við athugum að

⟨ψa|ψa⟩ =
∫ a

−a
(a2 − x2)2dx = 16

15a
5 (11.3)

Staðlaða bylgjufallið er því
∣∣∣ψ̃a〉 =

√
15

16a(1 − x2

a2 ). Þar með gildir fyrir sérhvert a að orka
grunnástandsins er minni heldur en væntigildið á Hamilton-virkjanum miðað við ástöndin
ψ̃a. Ályktum því að

Egs ≤
〈
ψ̃a
∣∣∣Ĥ∣∣∣ψ̃a〉 =

〈
ψ̃a
∣∣∣ P̂ 2

2m + V (X̂)
∣∣∣ψ̃a〉 = − ℏ2

2m
〈
ψ̃a
∣∣∣∂2
x

∣∣∣ψ̃a〉+ α
〈
ψ̃a
∣∣∣|x|
∣∣∣ψ̃a〉 (11.4)

Athugum síðan að heildin tvö verða〈
ψ̃a
∣∣∣∂2
x

∣∣∣ψ̃a〉 = − 15
8a5

∫ a

−a
(a2 − x2) dx = − 5

2a2 , (11.5)
〈
ψ̃a
∣∣∣|x|
∣∣∣ψ̃a〉 = 2 · 15

16a

∫ a

0
(1 − x2

a2 )2 dx = 5a
16 . (11.6)

Við ályktum því að

Egs ≤ f(a) = 5ℏ2

4a2m
+ 5αa

16 . (11.7)

Við viljum síðan lágmarka fallið f(a) svo við athugum að

f ′(a) = 0 =⇒ amin = 2
(

ℏ2

mα

)1/3
(11.8)

Athugum að þetta er lággildi því a → ∞ þýðir að f verður eins stórt og vera skal. Því fæst

Egs ≤ f(amin) = 15
16

(
ℏ2α2

m

)1/3

. (11.9)
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Dæmi 22. (Lokapróf 2015) Ögn með massa m er í óendanlega djúpum mættisbrunni með δ-
mætti í miðjum brunninum,

V (x) =


απ2ℏ2

ma δ(x− a
2 ) ef 0 < x < a ,

∞ annars ,
(11.10)

(a) i. Rissið upp graf af bylgjufalli sem lýsir grunnástandi agnarinnar.
ii. Notið 1. stigs tímaóháðan truflanareikning til að meta hliðrun leyfilegra orku-

gilda í mættisbrunninum þegar litið er á δ-mættið sem truflun.
(b) Finnið efri mörk á orku grunnástandsins með hnikun yfir föllin

ψb(x) = sin
(
πx

a

)
+ b sin

(3πx
a

)
, (11.11)

Lausn: (aii) Til að rissa upp grafið er best að gera það með truflanareikning og líta á
þetta sem Ĥ = Ĥ0 + αĤ ′ með Ĥ ′ = π2ℏ2

ma δ(x − a
2 ) = 2aE(0)

1 δ(x − a
2 ) þar sem að eiginástönd

og eigingildi ótruflaða Hamilton-virkjans eru

|n⟩ :=
∣∣∣ψ(0)
n

〉
=
√

2
a

sin
(
nπx
a

)
, E(0)

n = ℏ2π2n2

2ma2 . (11.12)

Með truflanareikningi má meta eiginorkur Ĥ sem En = E
(0)
n + αE

(1)
n + α2E

(2)
n þar sem

E(1)
n = ⟨n|Ĥ ′|n⟩ = 4E(0)

1

∫
sin2(nπxa )δ(x− a

2 )dx = 4E(0)
1 sin2(nπ2 ) =

4E(0)
1 ef n er oddatala ,

0 ef n er slétt .

Fyrir grunnástandið getum við líka metið annars stigs leiðréttinguna

E
(2)
1 =

∑
n≥2

∣∣∣ ⟨n|Ĥ ′|1⟩
∣∣∣2

E
(0)
1 − E

(2)
n

= 16E(0)
1
∑
n≥2

sin2(nπ2 )
1 − n2 = 16E(0)

1
∑
k≥1

1
1 − (2k + 1)2 = −4E(0)

1 (11.13)

En við getum einnig metið leiðréttingu við grunnástandið sjálft vegna truflunarinnar

∣∣∣ψ(1)
1

〉
=
∑
m̸=1

⟨m|Ĥ ′|1⟩
E

(0)
1 − E

(0)
m

|m⟩ =
∑
m≥2

4α sin
(
mπ
2
)

1 −m2

√
2
a

sin
(
mπx

a

)
. (11.14)

Með því að taka fyrstu liðina fáum við eftirfarandi mynd:

Mynd 1. (ai) Grunnástand miðað við 1. stigs truflanareikning.
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(b) Þverstaðlaða hnikunarfallið er þá

|ψb⟩ = 1√
1 + b2

(|1⟩ + b |3⟩) . (11.15)

Athugum því að

Egs ≤ ⟨ψb|Ĥ|ψb⟩ = 1
1 + b2 (⟨1| + b ⟨3|)

(
Ĥ0 + Ĥ ′

)
(|1⟩ + b |3⟩) (11.16)

= 1
1 + b2

[
⟨1|Ĥ0|1⟩ + b2 ⟨3|Ĥ0|3⟩ + α ⟨1|Ĥ ′|1⟩ + 2αb ⟨1|Ĥ ′|3⟩ + αb2α ⟨3|Ĥ ′|3⟩

]
(11.17)

= E
(0)
1

1 + b2

[
1 + 9b2 + 4α− 8αb+ 4αb2

]
. (11.18)

Þar sem að við notuðum

⟨1|Ĥ0|1⟩ = E
(0)
1 , ⟨3|Ĥ0|3⟩ = E

(0)
3 = 9E(0)

1

(11.19)

⟨n|Ĥ ′|m⟩ = 2
a

∫ a

0
sin
(
nπx

a

)
sin
(
mπx

a

)
π2ℏ2

ma
δ(x− a

2)dx = 4E(0)
1 sin

(
nπ

2

)
sin
(
mπ

2

)
.

Við viljum ná ákvarða fyrir hvaða gildi á b hnikunin er lágmörkuð. Skoðum því

f(b) = 1 + 9b2 + 4α− 8αb+ 4αb2

1 + b2 , (11.20)

og athugum að

f ′(b) = 8(2b− α+ b2α)
(1 + b2)2 = 0 =⇒ bmin = − 1

α

(
1 ±

√
1 + α2

)
(11.21)

En fyrir þessi gildi á b fæst að

Egs ≤ E
(1)
0 f(bmin) =

E
(1)
0 (1 + 4α− 2α2 + O(α3) ef bmin = − 1

α(1 −
√

1 + α2 ,

E
(1)
0 (9 + 4α+ 2α2 + O(α3) ef bmin = − 1

α(1 +
√

1 + α2 .
(11.22)

Þar með sjáum við að fyrir bmin = − 1
α(1 −

√
1 + α2) þá náum við vissulega efra markinu í

fyrsta stigs truflanareikningi. Hinsvegar í 2. stigs truflanareikningi þá er

Egs = E
(0)
1

(
1 + 4α− 4α2

)
< E

(1)
0

(
1 + 4α− 2α2

)
.
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12 Heimadæmi 13. nóvember

Dæmi 23. Tvístiga kerfi með orkueigingildi ±E er í grunnástandi klukkan t = 0 þegar kveikt er á
truflun, sem síðan hnignar með tíma. Truflun Hamiltonvirkjans er lýst með fylkinu

ĥ(t) =
[

0 ∆ e−γt

∆ e−γt 0

]
(12.1)

m.v. grunn eiginástanda ótruflaðra Hamiltonvirkjans og ∆ ≪ E. Notið 1. stigs tíma-
háðan truflanareikning til að reikna líkur á að kerfið sé í örvuðu ástandi þegar t → ∞.

Lausn: Fyrsta stigs truflanareikningur gefur almennt að

c
(1)
j (t) = c

(0)
j (t) − i

ℏ
∑
k

∫ t

0
dt′ hjk(t′) c(0)

k (t′) eiωjkt
′
. (12.2)

Ritum |0⟩ fyrir grunnástandið og |1⟩ fyrir örvaða ástandið. Ótruflaði Hamiltonvirkinn er

Ĥ0|0⟩ = −E|0⟩, Ĥ0|1⟩ = +E|1⟩, ω0 = ω10 = E1 − E0
ℏ

= 2E
ℏ
. (12.3)

Kerfið er í |0⟩ við t = 0, svo c(0)
0 (0) = 1 og c(0)

1 (0) = 0. Athugum fyrst að

h10(t) = ⟨1|ĥ|0⟩ =
(
0 1
)( 0 ∆e−γt

∆eγt 0

)(
1
0

)
= ∆e−γt . (12.4)

Þá verður stuðullinn fyrir fyrsta örvaða ástandið

c
(1)
1 (t) = − i∆

ℏ

∫ t

0
dt′ e−(γ−iω0)t′ = i∆

ℏ(γ − iω0)
(
e(−γ+iω0)t − 1

)
. (12.5)

Fyrsta stigs tímaháður truflanareikningur gefur því bylgjufallið

|Ψ(t)⟩ =
(
c

(0)
0 (t) + c

(1)
0 (t)

)
e−iEt/ℏ|0⟩ +

(
c

(0)
1 (t) + c

(1)
1 (t)

)
e+iEt/ℏ|1⟩ (12.6)

= e
iEt
ℏ

[
|0⟩ + i∆

γℏ − 2Eie
− i2Et

ℏ
(
e−γte

2Eit
ℏ − 1

)
|1⟩
]
. (12.7)

Við ályktum því að líkur á að kerfið sé í |1⟩ verða

P1(t) =
∣∣∣∣ i∆
γℏ − 2Ei

(
e−γte

2Eit
ℏ − 1

)∣∣∣∣2 (12.8)

= −i∆
γℏ + 2Ei

i∆
γℏ − 2Ei

(
e−γte

2Eit
ℏ − 1

) (
e−γte− 2Eit

ℏ − 1
)

(12.9)

= ∆2

(γℏ)2 + (2E)2

(
1 + e−2γt − 2e−γt cos

(2Et
ℏ

))
−−−→
t→∞

∆2

(γℏ)2 + (2E)2 . (12.10)
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Dæmi 24. Hreintóna sveifill með horntíðni ω0 verður fyrir truflun

ĥ(t) = β

√
m3ω5

0
ℏ

X̂3 cos(ωt) , (12.11)

þar sem β ≪ 1 er fasti. Sveifillinn er í grunnástandi þegar kveikt er á trufluninni
klukkan t = 0. Slökkt er á henni aftur klukkan t = T > 0.

(a) Skrifið Hamiltonvirkja kerfisins, að trufluninni meðtalinni, sem fall af stigavirkjum.
(b) Notið 1. stigs tímabháðan truflanareikning til að reikna líkurnar á því að sveifillinn

sé í fyrsta örvaða ástandi þegar t > T .
(c) Hvaða valreglur gilda um tilfærslur milli eiginástanda ótruflaðs sveifils af völdum

truflunarinnar?

Lausn: (a) Hamiltonvirki ótruflaða hreintóna sveifilsins í einni vídd er

Ĥ0 = ℏω
(
â+â− + 1

2

)
. (12.12)

Þurfum að umrita truflunina ĥ með stigavirkjunum. Umritum því

â± = 1√
2ℏmω0

(
∓iP̂ ±mω0X̂

)
(12.13)

fyrir P̂ og X̂ samkvæmt

X̂ =
√

ℏ
2mω0

(â+ + â−) , P̂ = i

√
mω0ℏ

2 (â+ − â−) (12.14)

Þar með verður truflunin

ĥ(t) = β

√
m3ω5

0
ℏ

( ℏ
2mω0

)3/2
cos(ωt) (â+ + â−)3 = ℏω0

2
√

2
β cos(ωt)(â+ + â−)3 . (12.15)

(b) Fyrsta stigs tímaháður truflanareikningur gefur almennt

c
(1)
j (t) = c

(0)
j (t) − i

ℏ
∑
k

∫ t

0
dt′ hjk(t′) c(0)

k (t′) eiωjkt
′
, ωjk ≡ Ej − Ek

ℏ
. (12.16)

Ritum |n⟩ fyrir eiginástand ótruflaða sveifilsins með orku En. Þá gildir

Ĥ0|n⟩ = En|n⟩, En = ℏω0
(
n+ 1

2

)
, (12.17)

svo

E0 = 1
2ℏω0, E1 = 3

2ℏω0, ω10 = E1 − E0
ℏ

= ω0. (12.18)
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Kerfið er í |0⟩ við t = 0 og því

c
(0)
0 (0) = 1, c(0)

n (0) = 0 fyrir n ≥ 1. (12.19)

Í summunni yfir k þegar við reiknum c
(1)
1 (t) er því einungis framlag fyrir k = 0 sem gefur

framlag. Við athugum því að

h10(t) = ⟨1|ĥ|0⟩ = β
ℏω0

2
√

2
cos(ωt) ⟨1|(â+ + â−)3|0⟩ = 3βℏω0

2
√

2
cos(ωt) . (12.20)

þar sem að við notuðum að

⟨1|(â0 + â−)3|0⟩ = ⟨1|â+â−â+ + â−â
2
+|0⟩ = 1 + 2 = 3 . (12.21)

En þar með ályktum við að

c
(1)
1 (t) = − i

ℏ

∫ t

0
dt′ h10(t′)eiω10t′ = −3iβω0

2
√

2

∫ t

0
dt′ cos

(
ωt′
)
eiω0t′ (12.22)

= −3iβω0

4
√

2

∫ t

0
dt′
(
ei(ω0+ω)t′ + ei(ω0−ω)t′

)
(12.23)

= 3βω0

4
√

2

[
ei(ω0+ω)t − 1
ω0 + ω

+ ei(ω0−ω)t − 1
ω0 − ω

]
(12.24)

= 3βω0

4
√

2

[
e

i(ω0+ω)t

2
2i

ω0 + ω
sin
(
ω0 + ω

2 t

)
+ e

i(ω0−ω)t

2
2i

ω0 − ω
sin
(
ω0 − ω

2 t

)]
(12.25)

Eftir smá handavinnu ályktum við því að líkurnar á því að sveifilinn sé í fyrsta örvaða ástandi
klukkan t = T eru

P1(T ) =
∣∣∣c(1)

1 (T )
∣∣∣2 = 9β2ω2

0
8

[
sin2(ω0+ω

2 T )
(ω0 + ω)2 +

sin2(ω0−ω
2 T )

(ω0 − ω)2 + 2 cos(ωT )
ω2

0 − ω2 sin
(
ω0 + ω

2 T

)
sin
(
ω0 − ω

2 T

)]
.

(12.26)

(c) Til að reikna valreglur fyrir stök fylki truflunarinnar athugum við að

hmn(t) = ⟨m|ĥ|n⟩ = β
ℏω0

2
√

2
cos(ωt) ⟨m|(â+ + â−)3|n⟩ . (12.27)

Með því að skoða hugsanlegar samsentingar á hækkunar- og lækkunarvirkjum sjáum við t.d.
að liður með â3

+ hækkar um 3, liður með â3
− lækkar um 3, liður með â2

+â− hækkar um 1 og
liður með â+â

2
− lækkar um 1. Valreglur segja því að

⟨m|X̂3|n⟩ ≠ 0 ⇐⇒ m = n± 3 eða m = n± 1 . (12.28)
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