
Heimadæmi í Rafsegulfræði vorið 2024

Matthias Harksen
Raunvísindastofnun Háskóla Íslands
Dunhaga 3, 107 Reykjavík, Iceland

E-mail: mbh6@hi.is

Abstract: Drög að lausnum á heimadæmum í námskeiðinu Rafsegulfræði 1 vorið 2024.

mailto:mbh6@hi.is


Efnisyfirlit

1 Heimadæmi 12. janúar 2

2 Heimadæmi 18. janúar 5

3 Heimadæmi 25. janúar 8

4 Heimadæmi 1. febrúar 13

5 Heimadæmi 8. febrúar 15

6 Heimadæmi 16. febrúar 16

7 Heimadæmi 22. febrúar 18

8 Heimadæmi 29. febrúar 20

9 Heimadæmi 7. mars 22

10 Heimadæmi 14. mars 25

11 Heimadæmi 21. mars 29

12 Heimadæmi 4. apríl 32

13 Heimadæmi 11. apríl 34

– 1 –



1 Heimadæmi 12. janúar

Dæmi 1. Tveir óendanlega langir vírar hafa fastan línuhleðsluþéttleika λ. Annar vírinn liggur
eftir x-ásnum í þrívíðu rúmi og hinn eftir y-ásnum.

(a) Finnið rafsviðið sem fall af staðsetningu í xy-plani. Skrifið svarið í kartesarhnitum.
(b) Finnið rafsviðið sem fall af staðsetningu á z-ásnum.
(c) Finnið rafsviðið í almennum punkti (x, y, z) í kartesarhnitum.

Lausn: (a) Þar sem að vírarnir eru óendanlega langir þá hafa þeir einungis geislalægt
rafsvið. Rafsviðin frá vírunum leggjast saman svo okkur nægir að skoða verkefnið fyrir hvorn
um sig og leggja það síðan saman. Rafsviðið frá óendanlega löngum vír í geislalægri fjarlægð
r frá vírnum er gefið samkvæmt lögmáli Gauss með:∮

E⃗ · dA⃗ = Qinni
ϵ0

=⇒ E(r) · 2πrℓ = λℓ

ϵ0
=⇒ E(r) = λ

2πϵ0r
. (1.1)

En þar með ályktum við að heildarrafsviðið í punkti (x, y, 0) er gefið með:

E⃗(x,y,0) = E⃗x-vír + E⃗y-vír =

 0
λ

2πϵ0y

0

+


λ

2πϵ0x

0
0

 = λ

2πϵ0

1/x

1/y

0

 . (1.2)

(b) Fyrir punkt á z-ásnum, þ.e. (0, 0, z) þá eru báðir vírarnir í fjarlægð z frá vírnum þannig
að þeir veita báðir sama framlag:

E⃗(0,0,z) = E⃗x-vír + E⃗y-vír =

 0
0
λ

2πϵ0z

+

 0
0
λ

2πϵ0z

 = λ

2πϵ0

 0
0

2/z

 . (1.3)

(c) Skoðum fyrst rafsviðið frá vírnum sem liggur eftir x-ásnum. Þá er punkturinn (x, y, z) í
fjarlægð r =

√
y2 + z2 frá vírnum og liggur í geislalæga stefnu svo rafsviðið er gefið með:

E⃗x-vír = λ

2πϵ0r

 0
y/r

z/r

 = λ

2πϵ0


0
y

y2+z2
z

y2+z2

 , og því E⃗y-vír = λ

2πϵ0


x

x2+z2

0
z

x2+z2

 . (1.4)

Heildarrafsviðið í punkti (x, y, z) er því gefið með summunni af þessum tveimur framlögum

E⃗(x,y,z) = E⃗x-vír + E⃗y-vír = λ

2πϵ0


x

x2+z2
y

y2+z2
z

x2+z2 + z
y2+z2

 . (1.5)

Sem passar einmitt við hin tvö svörin í (a) þegar z = 0 og í (b)-lið þegar x = y = 0.
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Útúrdúr: Það er líka hægt að gera þetta með því að heilda yfir hvorn vír um sig. En
þá mæli ég með því að gera þetta til dæmis í Mathematica. Fyrir vírinn sem liggur meðfram
x-ás fengist þá að í punkti (a, b, c) væri:

E⃗x-vír =
∫ +∞

−∞

λdx

4πϵ0

(
(a − x)2 + b2 + c2

)−3/2
a − x

b

c

 = λ

2πϵ0(b2 + c2)

0
b

c

 (1.6)

sem passar einmitt við niðurstöðuna okkar úr (c)-lið.

Dæmi 2. Kúla með geisla R og miðju í upphafspunktinum hefur heildarrafhleðslu Q og hleðslu-
þéttleika ρ(r⃗ ) = c r2 þar sem r = |r⃗ | og stöðlunarfastinn c ákvarðast af

Q =
∫

r≤R
ρ(r⃗ )d3r. (1.7)

(a) Finnið stærð og stefnu rafsviðsins E⃗ sem fall af r⃗.
(b) Reiknið rafmættið sem fall af r⃗ ef gert er ráð fyrir að V (r⃗ ) → 0 þegar r → ∞.
(c) Reiknið stöðuorku hleðsludreifingarinnar.

Lausn: (a) Skiptum kúlunni niður í litlar kúluskeljar og byrjum á því að reikna:

Q =
∫

r≤R
ρ(r⃗ )d3r =

∫ R

0
dr4πr2cr2 = 4πc

5 R5 =⇒ c = 5Q

4πR5 . (1.8)

Vegna samhverfu mun rafsviðið vera geislalægt þannig að í kúluhnitum er E⃗(r⃗ ) = E(r)r̂ og
okkur nægir því að ákvarða styrk rafsviðsins í geislalæga stefnu. Skiptum því í tvö tilvik. Ann-
ars vegar fyrir (i) r ≥ R og hinsvegar fyrir (ii) 0 ≤ r ≤ R. Fyrir r ≥ R mun heildarhleðslan
inni í Gauss-fletinum vera Q svo þá fæst sama niðurstaða og fyrir punkthleðslu:

E(r) = Q

4πϵ0r2 , fyrir r ≥ R. (1.9)

Hinsvegar fyrir 0 ≤ r ≤ R þá er hleðslan inni í Gauss-fletinum gefin með:

Qinni(r) =
∫ r

0
dr4πr2cr2 = 4πc

5 r5 = Q

(
r

R

)5
. (1.10)

En þar með gefur lögmál Gauss að:∮
E⃗ · dA⃗ = Qinni(r)

ϵ0
=⇒ E(r) = Q

4πϵ0r2

(
r

R

)5
, fyrir 0 ≤ r ≤ R. (1.11)

Við ályktum því að rafsviðið er gefið með:

E(r) =


Q

4πϵ0r2
(

r
R

)5 ef 0 ≤ r ≤ R,
Q

4πϵ0r2 ef r ≥ R.
(1.12)
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(b) Til þess að ákvarða rafmættið, V (r), þá er einfaldast að nýta sér að E⃗ = −∇⃗V en vegna
kúlusamhverfu þá er

E⃗(r⃗ ) = −
(

∂rV r̂ + 1
r

∂θV θ̂ + 1
r sin θ

∂φV φ̂

)
. (1.13)

En þar sem að E⃗ er geislalægt þá er ∂θV = ∂φV = 0. Með öðrum orðum, vegna kúlusamhverfu
nægir okkur að leysa fyrsta stigs diffurjöfnuna

E(r) = −∂rV (r) =⇒ V (r) = −
∫

E(r)dr. (1.14)

Fyrir r ≥ R gefur þetta eins og fyrir punkthleðslu að:

V (r) = −
∫

E(r)dr = −
∫

Q

4πϵ0r2 dr = Q

4πϵ0r
+ α, (1.15)

þar sem að α er heildunarfasti sem að ákvarðast af skilyrðinu að V (r → ∞) = 0 en það gefur
einmitt að α = 0. Fyrir 0 ≤ r ≤ R þá fáum við hinsvegar að:

V (r) = −
∫

E(r)dr = −
∫

Q

4πϵ0r2

(
r

R

)5
dr = − Q

16πϵ0R5 r4 + β, (1.16)

þar sem að heildunarfastinn β ákvarðast af því að rafmættið verður að vera samfellt í r = R

svo við höfum með samanburði að:

V (R) = Q

4πϵ0R
= − 1

16πϵ0R
+ β =⇒ β = Q

4πϵ0R

(
1 + 1

4

)
= 5Q

16πϵ0R
. (1.17)

Við höfum þar með sýnt að rafmættið er gefið með:

V (r) =


Q

16πϵ0R

(
5 −

(
r
R

)4) ef 0 ≤ r ≤ R,
Q

4πϵ0r ef r ≥ R.
(1.18)

(c) Fljótlegasta leiðin er eflaust að reikna þetta þannig að:

W = 1
2

∫
R3

ρV dτ = 1
2

∫ R

0
ρ(r)4πr2V (r)dr

= 1
2

∫ R

0
cr24πr2 · Q

16πϵ0R

(
5 −

(
r

R

)4
)

dr

= cQ

8ϵ0R

∫ R

0

(
5r4 − r8

R4

)
dr

= cQ

8ϵ0R

(
R5 − 1

9R5
)

= cQR4

9ϵ0
,

(1.19)

þar sem að í öðru jafnaðarmerkinu nýttum við okkur að ρ(r) = 0 fyrir r ≥ R. Með því að
stinga loks inn að c = 5Q

4πR5 þá ályktum við að stöðuorka hleðsludreifingarinnar er gefin með:

W = 5
9

Q2

4πϵ0R
. (1.20)
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2 Heimadæmi 18. janúar

Dæmi 3. (a) Grannur vír af lengd L, sem ber jafndreifða rafhleðslu Q, liggur eftir x-ás frá
x = −L/2 til x = L/2.

i. Finnið rafmættið í punktinum (x, 0, 0) með x > L/2.
ii. Túlkið niðurstöðuna fyrir markgildið x ≫ L.

(b) Þunn skrífa með geisla R ber jafndreifða rafhleðslu Q.
i. Finnið rafmættið á samhverfuás skrífunnar í fjarlægð d frá miðpunkti hennar.
ii. Túlkið niðurstöðuna fyrir markgildin d ≫ R og d ≪ R.

Lausn: (a) Línuhleðsluþéttleikinn er λ = Q
L þannig að rafmættið í a > L

2 er gefið með:

V (a, 0, 0) =
∫ L/2

−L/2

λdx

4πϵ0(a − x) = − λ

4πϵ0
ln
(

a − L
2

a + L
2

)
. (2.1)

Skoðum síðan markgildið a ≫ L þ.e. L
a ≪ 1. Byrjum á því að athuga að:

a − L
2

a + L
2

= 1 − L

a + L
2

= 1 − L

a(1 + L
2a)

= 1 − L

a

(
1 + L

2a

)−1 L
a

≪1
≈ 1 − L

a
. (2.2)

Þar sem að við notuðum nálgunina (1 + x)n ≈ 1 + nx. En þar með höfum við að:

V (a, 0, 0) = − λ

4πϵ0
ln
(

a − L
2

a + L
2

)
L
a

≪1
≈ − λ

4πϵ0
ln
(

1 − L

a

) L
a

≪1
≈ λL

4πϵ0a
= Q

4πϵ0a
. (2.3)

Þar sem að við notuðum nálgunina ln(1 + x) ≈ x. En þetta er einmitt rafmættið í fjarlægð a

frá punkthleðslu Q.

(b) Flatarhleðsluþéttleiki skífunnar er σ = Q
πR2 . Skiptum skífunni upp í marga litlar

þunnar hringskífur með geisla r og þykkt dr. Hver þeirra veitir þá framlag í hæð d yfir
miðpunkti hennar:

dV = dq

4πϵ0
√

d2 + r2
= σ2πrdr

4πϵ0
√

d2 + r2
. (2.4)

En þar með fáum við að:

V (0, 0, d) = σ

2ϵ0

∫ R

0

rdr√
d2 + r2

= σ

2ϵ0

(√
R2 + d2 − d

)
. (2.5)

Byrjum síðan á því að skoða tilvikið þegar d ≫ R þ.e. R
d ≪ 1 þá fæst að:

√
R2 + d2 − d = d

(1 + R2

d2

)1/2

− 1

 R
d

≪1
≈ d

(
1 + 1

2
R2

d2 − 1
)

= R2

2d
. (2.6)
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Þar sem að við notuðum nálgunina (1 + x)n ≈ 1 + nx. En þar með er

V (0, 0, d) = σ

2ϵ0

R2

2d
= Q

4πϵ0d
, ef d ≫ R. (2.7)

þar sem að við notuðum að Q = σπR2. En þetta er einmitt rafmættið í fjarlægð d frá
punkthleðslu Q. Hinsvegar ef d ≪ R þ.e. d

R ≪ 1 þá athugum við að:

√
d2 + R2 − d = R

√
1 + d2

R2 − d ≈ R + d2

2R
− d ≈ R. (2.8)

En þar með er

V (0, 0, d) = σR

2ϵ0
= Q

2πϵ0R
, ef d ≪ R. (2.9)

En þetta stemmir við rafmættið í miðju disksins.

Dæmi 4. Punkthleðsla q er í punktinum (a, 0, 0) fyrir utan leiðandi kúluyfirborð með geisla R og
miðju í upphafspunktinum.

(a) Notið sýndarhleðsluaðferð til að finna stærð og stefnu rafkraftsins á q.
(b) Hve mikla vinnu þarf að framkvæma til að færa hleðsluna óendanlega langt frá

kúlunni.
(c) Finnið stöðuorku kerfis, sem eingöngu inniheldur hleðsluna q og sýndarhleðsluna í

(a)-lið, og berið saman við svarið í (b)-lið.
(d) Finnið vinnuna í (b)-lið í eV fyrir rafeind sem er upphaflega í 1,0 nm fjarlægð frá

yfirborði leiðandi kúlu með 1,0 cm geisla.

Lausn: Skýrum fyrst hvernig má ákvarða sýndarhleðsluna p og vegalengdina frá miðju,
b, með því að skoða einungis punktana tvo (−R, 0, 0) og (R, 0, 0) á kúlunni. Höfum þá að
mættið er gefið með:

V (R, 0, 0) = 1
4πϵ0

(
q

a − R
+ p

R − b

)
= 0, V (−R, 0, 0) = 1

4πϵ0

(
q

R + a
+ p

R + b

)
= 0. (2.10)

En þar með höfum við fengið jöfnuhneppi með tveimur óþekktum stærðum p og b sem fall af
gefnu stærðunum a, R og q. Deilum jöfnunum tveimur saman til að fá:

R + a

R − a
= −R + b

R − b
=⇒ (R + a)(R − b) = −(R + b)(R − a) =⇒ b = R2

a
. (2.11)

En með því að stinga þessu inn í aðra af j0öfnunum fæst:

p = q
R − b

R − a
= q

R − R2

a

R − a
= −R

a
q. (2.12)
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Sýnum nú að þessi sýndarhleðsla uppfylli skilyrðið að rafmættið á kúluyfirborðinu sé allsstaðar
núll. Höfum að rafmættið er gefið með:

V (x, y, z) = q

4πϵ0
√

(a − x)2 + y2 + z2 + p

4πϵ0
√

(b − x)2 + y2 + z2

= q

4πϵ0

 1√
(a − x)2 + y2 + z2 − 1

a
R

√
(R2

a − x)2 + y2 + z2

 (2.13)

Sérhvern punkt á kúlunni má skrifa í kúluhnitum sem

x = R cos θ sin φ, y = R sin θ sin φ, z = R cos φ. (2.14)

En þar með höfum við að í öllum punktum á kúluyfirborðinu gildir að:

V (R, θ, φ) = q

4πϵ0

(
1√

a2 + R2 − 2aR cos θ sin φ
− 1√

a2 + R2 − 2aR cos θ sin φ

)
= 0. (2.15)

(a) Þetta gefur því að rafkrafturinn sem verkar á hleðsluna q er gefinn með:

Fq = qp

4πϵ0(a − b)2 = −
q2 R

a

4πϵ0
(
a − R2

a

)2 = − q2

4πϵ0

Ra

(a2 − R2)2 . (2.16)

í geislalægu stefnuna að leiðandi kúluyfirborðinu.
(b) Í fjarlægð x er rafkrafturinn gefinn með:

Fq(x) = − q2

4πϵ0

Rx

(x2 − R2)2 , (2.17)

En því er vinnan sem þarf til að færa hleðsluna óendanlega langt frá kúlunni gefin með:

Wa→∞ = −
∫ +∞

a
Fq(x)dx = q2R

4πϵ0

∫ +∞

a

x

(x2 − R2)2 dx = − q2R

8πϵ0

[ 1
x2 − R2

]+∞

a
= q2

8πϵ0

R

a2 − R2 .

(2.18)

(c) Stöðuorkan er gefin með

U = qp

4πϵ0(a − b) = − q2

4πϵ0

R/a

a − R2

a

= − q2

4πϵ0

R

a2 − R2 . (2.19)

En þetta er tvisvar sinnum stærra heldur en svarið í (b) því þar vorum við einungis að skoða
það að færa hleðsluna q en ekki einnig sýndarhleðsluna p frá 0 í b. Formerkið er öfugt bara
út frá formerkjamismuninum í skilgreiningu stöðuorku út frá vinnu.

(d) Fyrir R = 1,0 cm, a = R + d þar sem d = 1,0 nm, q = e = −1,602 · 10−19 C og
rafsvörunarstuðul tómarúms ϵ0 = 8,85 ·10−12 F/m fæst að tölulega gildið á vinnunni sem þarf

Wrafeind = q2

8πϵ0

R

(R + d)2 − R2 = q2

8πϵ0R

(
(1 + d

R
)2 − 1

)−1 d
R

≪1
≈ q2

16πϵ0d
= 0,36 eV. (2.20)

þar sem að í síðasta skrefinu notuðum við að 1 eV = 1,602 · 10−19 J.
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3 Heimadæmi 25. janúar

Dæmi 5. Leysið tvívíðu Laplace-jöfnuna á svæðinu −b < x < b, 0 < y < a í xy-planinu, þar sem
a, b, V0 > 0 eru fastar, með eftirfarandi jaðarskilyrðum:

V (x, y)
∣∣∣∣
x=±b

= 0, V (x, y)
∣∣∣∣
y=0

= 0, V (x, y)
∣∣∣∣
y=a

= V0
b

x. (3.1)

Lausn: Tvívíða Laplace-jafnan segir að ∇2V = 0 þ.e.
(
∂2

x + ∂2
y

)
V (x, y) = 0. Við

skulum beita aðskilnaði breytistærða til þess að ákvarða almenna lausn sem uppfyllir gefnu
jaðarskilyrðin. Skoðum því V (x, y) = f(x)g(y) og athugum að þá gefur Laplace-jafnan að:(

∂2
x + ∂2

y

)
f(x)g(y) = 0 =⇒ f ′′(x)

f(x) = −g′′(y)
g(y) = γ. (3.2)

Þar sem að við ályktuðum að þar sem að báðar hliðar eru fall af ólíkum breytistærðum þá er
til fasti γ þannig að hvor hlið sé jöfn γ. Hinsvegar þá þurfum við að skoða þrjú tilvik eftir
því hvert formerki γ er. Höfum tilvikin (i) γ = 0 (ii) γ = k2 og (iii) γ = −ω2.

Tilvik (i) Þegar γ = 0 þá verða diffurjöfnurnar tvær

f ′′(x) = 0 =⇒ f(x) = Ax + B, g′′(y) = 0 =⇒ g(y) = Cy + D. (3.3)

Því verður almenna lausnin gefin með:

V (x, y) = f(x)g(y) = (Ax + B)(Cy + D). (3.4)

Athugum svo til að byrja með að fyrsta jaðarskilyrðið má umorða þannig að:

0 = V (x, y)
∣∣∣∣
x=±b

= f(x)g(y)
∣∣∣∣
x=±b

=⇒ f(±b) = 0. (3.5)

Þetta gefur því að 0 = f(b) = Ab + B og 0 = f(−b) = −Ab + B. Með því að leggja
saman jöfnurnar sést að B = 0 en þá fæst einnig að A = 0 því b > 0. Þetta sýnir að ef
γ = 0 þá er eina lausnin V (x, y) = 0.

Tilvik (ii) Þegar γ = k2 þá verða diffurjöfnurnar:

f ′′(x) = k2f(x) =⇒ f(x) = A cosh(kx) + B sinh(kx),
g′′(y) = −k2g(y) =⇒ g(y) = C cos(ky) + D sin(ky).

(3.6)

Fyrsta jaðarskilyrðið f(±b) = 0 gefur þar sem cosh er jafnstætt og sinh er oddstætt

A cosh(kb) + B sinh(kb) = 0 = A cosh(kb) − B sinh(kb). (3.7)

Með því að leggja saman jöfnurnar sést að B = 0 en þá stendur eftir að A cosh(kb) = 0
en cosh er strangt jákvætt fall svo við verðum að álykta að α = 0. Þar með höfum við
sýnt að fyrir γ = k2 þá er einnig V (x, y) = 0.
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Tilvik (iii) Höfum nánast gefið upp alla von þegar hingað er komið, en prófum í örvæntingu okkar
að setja γ = −ω2. Þá verða diffurjöfnurnar:

f ′′(x) = −ω2f(x) =⇒ f(x) = A cos(ωx) + B sin(ωx),
g′′(y) = ω2g(y) =⇒ g(y) = C cosh(ωy) + D sinh(ωy).

(3.8)

En þetta er algjör himnasending því nú gefur fyrsta skilyrðið f(±b) okkur að:

A cos(ωb) + B sin(ωb) = 0, og A cos(ωb) − B sin(ωb) = 0. (3.9)

Með því að leggja saman og draga frá sést að þetta jafngildir:

A cos(ωb) = 0, og B sin(ωb) = 0. (3.10)

Það eru til tvær ólíkar lausnir á þessu, nefnilega

A = 0, og ωb = nπ, n ∈ Z,

B = 0, og ωb = π

2 + nπ, n ∈ Z.
(3.11)

Athugum síðan að V (x, 0) = 0 skilyrðið er jafngilt því að g(0) = 0 en það gefur þá beint
að C = 0 því sinh(0) = 0 en cosh(0) = 1. Við höfum því sýnt að:

Vn(x, y) = αn sin
(

nπx

b

)
sinh

(
nπy

b

)
, (3.12)

eða
Vn(x, y) = βn cos

((
π

2 + nπ

)
x

b

)
sinh

((
π

2 + nπ

)
y

b

)
(3.13)

Þurfum síðan að ákvarða stuðlana αn og βn með því að para þá við stuðlana í Fourier-
röð fallsins h(x) = V0

b x fyrir Vn(x, a). Seinni valkosturinn er jafnstætt fall af x svo við
verðum að álykta að βn = 0. Fourier-röð fallsins h(x) á bilinu [−b, b] er gefin með:

∞∑
n=1

Vn(x, a) = h(x) = −2V0
π

+∞∑
n=1

(−1)n

n
sin
(

nπx

b

)
(3.14)

En þetta ákvarðar því stuðalana αn þannig að:

αn = −2V0
π

(−1)n

n

1
sinh

(
nπa

b

) (3.15)

En þar með getum við skrifað röðina sem:

V (x, y) = −2V0
π

∞∑
n=1

(−1)n

n
sin
(

nπx

b

)sinh
(nπy

b

)
sinh

(
nπa

b

) . (3.16)
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Dæmi 6. Kúluskel með geisla R og miðju í upphafspunktinum hefur yfirborðshleðsludreifingu
σ(θ, ϕ) = σ0 cos(2θ) í kúluhnitum.

(a) Finnið rafmættið alls staðar í rúminu ef gert er ráð fyrir að bæði utan og innan
kúluskeljarinnar sé tóm.

(b) Ákvarða á heildarrafhleðslu, raftvípólvægi og raffjórpólvægi hleðsludreifingarinnar
á kúluskelinni.

(c) Bera á rafmættið utan við kúluskelina í (a)-lið saman við samanlagt rafmætti frá
punktuppsprettum í upphafspunktinum sem bera sömu fjölpólavægi og í (b)-lið.
Hvað má álykta um hærri fjölpólamætti hleðsludreifingarinnar á kúluskelinni?

Lausn: Byrjum á því að athuga að þar sem að Legendre-margliðurnar Pℓ(x) mynda
þverstæðan grunn fyrir margliðurúmið þá getum við endurskrifað:

cos(2θ) = 2 cos2(θ) − 1 = 4
3P2(cos(θ)) − 1

3P0(cos θ). (3.17)

(a) Almenna lausn í kúluhnitum sem uppfyllir að V (r, θ) −−−→
r→∞

0 og að V (r, θ) −−−→
r→0

fasti
má skrifa á forminu:

V (r, θ) =


+∞∑
ℓ=0

Aℓr
ℓPℓ(cos θ) ef r ≤ R

+∞∑
ℓ=0

Bℓ

rℓ+1 Pℓ(cos θ) ef r ≥ R.
(3.18)

Fastarnir Aℓ og Bℓ ákvarðast af jaðarskilyrðunum í r = R sem segja okkur að:

(i) Vúti(R, θ) = Vinni(R, θ)

(ii)
(

∂Vúti
∂n − ∂Vinni

∂n

)
|r=R

= − σ
ϵ0

Fyrra skilyrðið segir okkur að:

AℓR
ℓ = Bℓ

Rℓ+1 =⇒ Bℓ = AℓR
2ℓ+1. (3.19)

En það seinna gefur okkur síðan að:

+∞∑
ℓ=0

(
−(ℓ + 1) Bℓ

rℓ+2 Pℓ(cos θ) − ℓAℓr
ℓ−1Pℓ(cos θ)

)
|r=R

= −σ(θ)
ϵ0

(3.20)

sem gefur eftir að við metum vinstri hliðina í r = R og notum að Bℓ = AℓR
2ℓ+1

Rℓ−1
+∞∑
ℓ=0

(2ℓ + 1)AℓPℓ(cos θ) = σ(θ)
ϵ0

(3.21)
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Margföldum núna með Pm(cos θ) sin θ báðum meginn og tegrum frá 0 upp í π til að fá

+∞∑
ℓ=0

∫ π

0
(2ℓ + 1)Rℓ−1AℓPℓ(cos θ)Pm(cos θ) sin θdθ = 1

ϵ0

∫ π

0
σ(θ) sin θPm(cos θ)dθ (3.22)

Notum síðan að∫ π

0
Pℓ(cos θ)Pm(cos θ) sin θdθ =

∫ 1

−1
Pℓ(x)Pm(x)dx = 2δmℓ

2ℓ + 1 (3.23)

Þar með höfum við sýnt að almennt gildi að:

Am = 1
2Rm−1ϵ0

∫ π

0
σ(θ) sin θPm(cos θ)dθ (3.24)

Þar með fáum við eftirfarandi tvo stuðla:

A0 = σ0R

2ϵ0

∫ π

0
−1

3P0(cos θ)2 sin θdθ = −Rσ0
3ϵ0

, (3.25)

A2 = σ

2ϵ0R

∫ π

0

4
3(P2(cos θ)2 sin θdθ = 4σ0

15ϵ0R
. (3.26)

En þetta gefur einnig stuðlana fyrir Bℓ = AℓR
2ℓ+1 þannig að

B0 = A0R = −R2σ0
3ϵ0

, B2 = A2R2 = 4σ0
15ϵ0

R4 (3.27)

En þar með ályktum við að rafmættið alls staðar í rúminu sé gefið með:

V (r, θ) =


+∞∑
ℓ=0

Aℓr
ℓPℓ(cos θ) ef r ≤ R

+∞∑
ℓ=0

Bℓ

rℓ+1 Pℓ(cos θ) ef r ≥ R
=


σ0R
3ϵ0

(
4
5

r2

R2 P2(cos θ) − 1
)

ef r ≤ R

σ0R
3ϵ0

(
4
5

R3

r3 P2(cos θ) − R
r

)
ef r ≥ R.

(3.28)

(b) Athugum næst að heildarrafhleðslan er gefin með:

Q =
∫

σ(θ, ϕ)dA =
∫ π

0
dθ

∫ 2π

0
dϕR2 sin θσ0 cos(2θ) = −4πσ0R2

3 (3.29)

Við hefðum því getað endurskrifað mættin innan og utan með því að nota að

σ0R

3ϵ0
= − Q

4πϵ0R
. (3.30)

Þetta passar líka vel við að einpólvægið er þá gefið með:

Veinpóll(r⃗) = −σ0R2

3ϵ0r
. (3.31)

– 11 –



Hefjumst nú handa við að ákvarða raftvípólvægi og raffjórpólvægi. Við reiknum því
tvískautið samkvæmt:

p⃗ =
∫

r⃗ρ(r⃗)dτ =
∫ π

0
dθ

∫ 2π

0
dϕR2 sin θ

R sin θ cos ϕ

R sin θ sin ϕ

R cos θ

σ(θ, ϕ) (3.32)

Athugum að þar sem að hornaföllin tegruð yfir lotu gefa núll þá hverfa x̂ og ŷ þátturinn
af p⃗ það kemur hinsvegar í ljós að ẑ þátturinn hverfur líka því:

pz = 2πR3σ

∫ π

0
sin(θ) cos(θ) cos(2θ)dθ = 0. (3.33)

Þannig að raftvípólvægið er núll Vtvípóll(r⃗) = 0 (sem endurspeglast einnig í því að
P1(cos θ) kom ekki fyrir í yfirborðshleðsludreifingunni σ(θ, ϕ)).

Við athugum næst að fjórpólafylkið er samhverfa fylkið

[Qij ] =

Qxx Qxy Qxz

Qyx Qyy Qyz

Qzx Qzy Qzz

 , þar sem Qij = 1
2

∫ (
3ri

′rj
′ − (r′)2

)
δij)ρ(r⃗ ′)dτ ′. (3.34)

Þannig að við fáum:

[Qij ] = 1
2

∫ π

0
dθ

∫ 2π

0
dϕR2 sin θσ0 cos(2θ)

R2(3 sin2 θ cos2 ϕ − 1) Qyx Qxz

3R2 sin2 θ cos ϕ sin ϕ R2(3 sin2 θ sin2 ϕ − 1) Qyz

3R2 sin θ cos θ cos ϕ 3R2 cos θ sin θ sin ϕ R2(3 cos2 θ − 1)



=

−8π
15 R4σ0 0 0

0 −8π
15 R4σ0 0

0 0 16π
15 R4σ0

 .

En þar með höfum við að

Vfjórpóll(r⃗) = 1
4πϵ0r3

3∑
i,j=1

r̂ir̂jQij = 1
4πϵ0r3 (r̂xr̂xQxx + r̂y r̂yQyy + r̂z r̂zQzz)

= 1
4πϵ0r3

(
sin2 θ cos2 ϕ

(
−8π

15 R4σ0

)
+ sin2 θ sin2 ϕ

(
−8π

15 R4σ0

)
+ cos2 θ

(16π

15 R4σ0

))
= σ0R4

4πϵ0r3 · 8π

15
(
2 cos2 θ − sin2 θ

)
= 4

15
σ0R4

ϵ0r3
1
2
(
3 cos2 θ − 1

)
= 4σ0R4

15ϵ0r3 P2(cos θ).

(c) Þar með höfum við sýnt að rafmættið sem að við reiknuðum í (a)-lið er jafnt línulegri sam-
antekt á rafmættinu frá einpól og því frá fjórpól, þ.e. V = Veinpóll + Vfjórpóll. Því eru engin
önnur framlög frá hærri fjölpólavægjum.
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4 Heimadæmi 1. febrúar

Dæmi 7. Kúla með geisla R og miðju í upphafspunktinum er úr rafsvarandi efni með rafviðtak
sem er háð fjarlægð frá miðju

χe(r⃗) = χ0
R

r, (4.1)

en utan kúlunnar er tóm. Í miðju kúlunnar er frjáls punktrafhleðsla q.
(a) Finnið sviðin D⃗, E⃗ og P⃗ inni í kúlunni.
(b) Ákvarðið bundinn hleðsluþéttleika ρb og σb sem fall af staðsetningu.
(c) Ákvarðið rafsviðið utan kúlunnar.

Lausn: (a) Rafsviðið er gefið með:

E⃗ =


q

4πϵ(r)r2 r̂ ef r ≤ R,
q

4πϵ0r2 r̂ ef r ≥ R.
(4.2)

þar sem ϵ(r) = ϵ0(1 + χe(r)) = ϵ0
(
1 + χ0

R r
)
. Þetta gefur því að:

D⃗ = ϵ(r)E⃗ = q

4πr2 r̂, (4.3)

fyrir öll r > 0 og þar með fæst að:

P⃗ = ϵ0χe(r)E⃗ =


q

4πr2

χ0
R

r

1+ χ0
R

r
r̂ ef r ≤ R,

0 ef r ≥ R.
(4.4)

því rafviðtakið er χe(r) = 0 utan kúlunnar fyrir r ≥ R.
(b) Þá athugum við að n̂ = r̂ þannig að:

σb = P⃗ · n̂|r=R = Pr|r=R = q

4πr2

χ0
R r

1 + χ0
R r

|r=R = q

4πR2
χ0

1 + χ0
(4.5)

og

ρb = −∇⃗ · P⃗ = − 1
r2

∂

∂r

(
r2Pr

)
= − 1

r2
∂

∂r

(
q

4π

χ0
R r

1 + χ0
R r

)

= − q

4πr2

(
χ0
R

(
1 + χ0

R r
)

−
(χ0

R

)2
r(

1 + χ0
R r
)2

)

= − q

4πr2

χ0
R

(1 + χ0
R r)2 .

(4.6)

(c) Sjá (a). Við getumlíka athugað með lögmáli Gauss að fyrir r > R fæst að:

Qinni = q + σb4πR2 +
∫ R

0
4πr2ρb(r)dr = q, (4.7)

sem gefur að E⃗ = q
4πϵ0r2 r̂ fyrir r > R.
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Dæmi 8. Óendanlega langur vír ber rafstraum I1 eftir x-ás og annar vír ber straum I2 eftir y-ás.

(a) Finnið segulsviðið í punktinum r⃗ = (a, a, 0) í kartesarhnitum.
(b) Gerum nú ráð fyrir að þriðji vírinn beri straum I3 eftir z-ásnum. Finnið segulsviðið

frá vírunum þremur í punktinum r⃗ = (a, b, c) með a, b, c ̸= 0.

Lausn: Látum nægja að leysa (b)-liðinn því (a)-liðurinn fæst fyrir b = a, c = 0 og
I3 = 0. Með því að skoða eftirfarandi myndir:

sést að:

B⃗x−vír = µ0I1
2π(b2 + c2)

 0
−c

b

 , B⃗y−vír = µ0I2
2π(a2 + c2)

 c

0
−a

 , B⃗z−vír = µ0I3
2π(a2 + b2)

−b

a

0

 .

(4.8)

En þar með er segulsviðið frá vírunum þremur gefið með:

B⃗ = B⃗x−vír + B⃗y−vír + B⃗z−vír = µ0
2π


cI2

(a2+c2) − bI3
(a2+b2)

aI3
(a2+b2) − cI1

(b2+c2)
bI1

(b2+c2) − aI2
(a2+c2)

 . (4.9)

en þar með verður svarið í (a)-lið þegar við metum í b = a, c = 0 og I3 = 0.

B⃗(a)−liður = µ0(I1 − I2)
2πa

ẑ. (4.10)
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5 Heimadæmi 8. febrúar

8. Langur sívalningslaga leiðari með geisla R og miðju á z-ásnum ber einsleitan rafstraum-
þéttleika J⃗ = J0ẑ.
(a) Finnið stærð og stefnu segulsviðsins inni í sívalningnum.
(b) Nú er sívalningslaga holrúm með geisla ρ borað út úr leiðaranum. Holrúmið liggur

eftir endilöngum sívalningnum og samhverfuás þess er í fjarlægð a frá z-ásnum,
þannig að a + ρ < R. Finnið segulsviðið inni í holrúminu ef gert er ráð fyrir að
straumþéttleikinn í leiðaranum utan holrúmsins sé hinn sami og í (a)-lið.

Lausn: (a) Samkvæmt lögmáli Ampéres, ∇⃗ × B⃗ = µ0J⃗ , fæst að ef r < R þá er:

B · 2πr =
∮

B⃗ · dℓ⃗ =
∫ (

∇⃗ × B⃗
)

· da⃗ = µ0

∫
J⃗ · da⃗ = µ0J0πr2, (5.1)

heildarstraumurinn er síðan Iinni = J0πR2 þannig að við höfum að:

B⃗ =


1
2µ0Jrϕ̂ ef r < R,
µ0JR2

2r ϕ̂ ef r ≥ R,
=


µ0
2 J⃗ × r⃗, ef r < R,

µ0
2

(
R2

r2

)
J⃗ × r⃗ ef r ≥ R.

(5.2)

(b) Sama niðurstaða og í (a) gildir um sívalning með miðju í a⃗ og með geisla ρ og þar sem
að rafsviðin leggjast saman þá fæst:

B⃗heild = B⃗1 − B⃗2 = µ0
2 J⃗ × r⃗ − µ0

2 J⃗ × (r⃗ − a⃗) = µ0
2 J⃗ × a⃗ = 1

2µ0Jaŷ. (5.3)

9. Vigurmætti frá sístæðum straumþéttleika má skrifa:

A⃗(r⃗ ) = µ0
4π

∫
V

d3r′ J⃗(r⃗ ′)
|r⃗ − r⃗ ′|

, (5.4)

(a) Leiðið út eftirfarandi jöfnu fyrir segulsviðið frá straumþéttleikanum:

B⃗(r⃗ ) = µ0
4π

∫
V

d3r′ J⃗(r⃗ ′) × (r⃗ − r⃗ ′)
|r⃗ − r⃗ ′|3

. (5.5)

(b) Sýnið að segulsviðið í (a)-lið uppfylli ∇⃗ · B⃗ = 0.

Lausn: (a) Fáum að:

B⃗ (r⃗ ) = ∇⃗ × A⃗(r⃗ ) = µ0
4π

∫
V

d3r′∇⃗ ×
(

J⃗(r⃗ ′)
|r⃗ − r⃗ ′|

)
(5.6)

= µ0
4π

∫
V

d3r′
( 1

|r⃗ − r⃗ ′|
∇⃗ × J⃗(r⃗ ′) − J⃗(r⃗ ′) × ∇⃗

( 1
|r⃗ − r⃗ ′|

))
(5.7)

= µ0
4π

∫
V

d3r′ J⃗(r⃗ ′) × (r⃗ − r⃗ ′)
|r⃗ − r⃗ ′|3

. (5.8)

Þar sem við notuðum að ∇⃗
(

1
|r⃗−r⃗ ′|

)
= − r⃗−r⃗ ′

|r⃗−r⃗ ′|3 og ∇⃗ × J⃗(r⃗ ′) = 0⃗ því J⃗(r⃗ ′) er fall af r⃗ ′.

(b) Þá fæst ∇⃗ · B⃗ = ∇⃗ ·
(
∇⃗ × A⃗(r⃗ )

)
= 0 því rót vigursviðs er sundurleitnilaus.
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6 Heimadæmi 16. febrúar

Dæmi 11. Kúla með geisla R og miðju í upphafspunktinum ber jafndreifða rafhleðslu Q og snýst
með föstum hornhraða ω um z-ásinn.

(a) Reiknið segultvípólvægi kúlunnar.
(b) Finnið segulsviðið í fjarlægð r ≫ R frá kúlunni á (i) z-ásnum (ii) x-ásnum.

Lausn: (a) Þetta minnir á útreikning fyrir hverfitregðu kúlu. Vegna samhverfu í ϕ

stefnuna er því þægilegt að skipta kúlunni niður í hringlaga gjarðir með geisla r sin θ í hæð
z = r cos θ. Þá er framlagið frá slíkri gjörð:

dm⃗gjörð = dIπr2 sin2 θẑ (6.1)

þar sem að straumurinn í hverri gjörð er gefinn með:

dI = dq

T
= wdq

2π
= wρr2 sin θdrdθdϕ

2π
(6.2)

En það þýðir að:

dm⃗gjörð = 1
2π

ωρπr4 sin3 θẑ (6.3)

En þar með ályktum við að segultvípólvægi kúlunnar er gefið með:

m⃗ =
∫

dm⃗gjörð =
∫ R

0
dr

∫ π

0
dθ

∫ π

0
dϕ

1
2π

ωρπr4 sin3 θẑ (6.4)

sem gefur því eftir að við tegrum og notum að ρ = 3Q
4πR3 að

m⃗ = 1
5QωR2ẑ = mẑ. (6.5)

(b) Reiknum nú segulsviðið frá þessum segultvípól samkvæmt

B⃗tvípóll(r⃗ ) = µ0
4πr3 [3(m⃗ · r̂)r̂ − m⃗] . (6.6)

í (i) er r⃗ = rẑ þannig að við fáum:

B⃗tvípóll(0, 0, r) = µ0
4πr3 [3(m⃗ · ẑ)ẑ − m⃗] = µ0m

2πr3 ẑ, (6.7)

en í (ii) er r⃗ = rx̂ þannig að við fáum:

B⃗tvípóll(r, 0, 0) = µ0
4πr3 [3(m⃗ · x̂)x̂ − m⃗] = − µ0m

4πr3 ẑ. (6.8)
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Dæmi 12. Óendanlega löng sívalningslaga spóla með geisla a og miðju á z-ás hefur n vafninga á
lengdareiningu. Um vír spólunnar fer rafstraumur I. Holrúmið inni í spólunni inniheldur
efni með breytilegt segulviðtak χm(s) = χ0

s2

a2 , þar sem s er fjarlægðin frá samhverfuásn-
um og χ0 er fasti. Finnið sviðin H⃗ og B⃗ inni í spólunni og alla bundna strauma.

Lausn: Þar sem að spólan er óendanlega löng er ekkert segulsvið utan spólunnar. Því
er segulsviðið inni í spólunni gefið með lögmáli Ampéres sem:

B⃗ = µnIẑ = µ0(1 + χm(s))nIẑ, fyrir s ≤ a. (6.9)

En þetta gefur því að:
H⃗ = 1

µ
B⃗ = nIẑ, fyrir s ≤ a. (6.10)

sem og
M⃗ = χmH⃗ = χm(s)nIẑ, fyrir s ≤ a. (6.11)

Bundni straumþéttleikinn er því gefinn með:

J⃗b = ∇⃗ × M⃗ = ∇⃗ × (χm(s)Inẑ) = − ∂

∂s
(χm(s)In) ϕ̂ = −2χ0Ins

a2 ϕ̂. (6.12)

þar sem að við reiknuðum rótina í sívalningshnitum. Fáum síðan að bundni yfirborðsstraum-
þéttleikinn er gefinn með:

K⃗b = M⃗ × n̂|s=a = χm(s)In ẑ × ŝ|s=a = χ0Inϕ̂. (6.13)
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7 Heimadæmi 22. febrúar

Dæmi 13. Leiðandi kúla með geisla R1 er umlukin kúluskel með innri geisla R1 og ytri geisla R2.
Kúluskelin er úr efni með rafsvörunarstuðul ϵ og eðlisleiðni σ. Utan við kúluskelina er
tóm. Klukkan t = 0 ber kúlan rafhleðslu Q0 en kúluskelin er óhlaðin.

(a) Ákvarðið stærð og stefnu rafsviðsins í fjarlægð r frá miðju kúlunnar klukkan t = 0.
Skoðið tilfellin r < R1, R1 < r < R2 og R2 < r hvert í sínu lagi.

(b) Finnið yfirborðsþéttleika bundinnar rafhleðslu á ytra yfirborði kúluskeljarinnar klukk-
an t = 0.

(c) Ákvarðið rafhleðsluna sem leiðandi kúlan ber sem fall af tíma fyrir t ≥ 0.

Lausn: (a) Höfum að:

E⃗(r⃗) =


0⃗ ef r < R1,

Q0
4πϵr2 r̂ ef R1 ≤ r ≤ R2,

Q0
4πϵ0r2 r̂ ef r > R2.

(7.1)

(b) Klukkan t = 0 er skautunin gefin með P⃗ = ϵ0χ0E⃗ = (ϵ − ϵ0) E⃗. Þá er:

σb = P⃗ · n⃗|r=R2 = (ϵ − ϵ0) Q

4πϵR2
2

=
(

1 − ϵ0
ϵ

)
Q0

4πR2
2
. (7.2)

(c) Við athugum þá að:

dQ

dt
= −I(t) = −

∫
J⃗ · da⃗ = −σ

∫
E⃗ · da⃗ = −σ

ϵ
Q, (7.3)

þar sem að við notuðum lögmál Ohms J⃗ = σE⃗ í þriðja jafnaðarmerkinu. En þar með ályktum
við að hleðslan hnignar sem fall af tíma samkvæmt:

Q(t) = Q0e− σ
ϵ

t. (7.4)
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Dæmi 14. Ferningslaga straumlykkja með hliðarlengd L er staðsett í xz-planinu með miðju í upp-
hafspunktinum og hliðar samsíða hnitaásunum klukkan t = 0. Lykkjan hreyfist á föstum
hraða v⃗ = v0ẑ í ytra segulsviði

B⃗(r⃗ ) = B0Lz

(L2 + z2) ŷ, (7.5)

þar sem B0 er fasti.

(a) Finnið spanstrauminn J(t) í lykkjunni ef hún hefur viðnám R.

(b) Teiknið graf J(t) í (a)-lið.

(c) Ákvarðið öll gildi á tímanum t þar sem J(t) = 0.

Lausn: (a) Við athugum að flæðið í gegnum gjörðina eftir að hún hefur ferðast um
d = v0t er gefið með:

ΦB(t) =
+ L

2 +v0t∫
− L

2 +v0t

B(z)Ldz = B0L2
+ L

2 +v0t∫
− L

2 +v0t

z

L2 + z2 dz = B0L2

2
[
ln
(
L2 + z2

)]+ L
2 +v0t

− L
2 +v0t

(7.6)

= B0L2

2

(
ln
(

L2 + (v0t + L

2 )2
)

− ln
(

L2 + (v0t − L

2 )2
))

. (7.7)

En þá er spanstraumurinn gefinn með:

J(t) = − 1
R

dΦB

dt
= −B0L2v0

R

[
L
2 + v0t

L2 + (L
2 + v0t)2 +

L
2 − v0t

L2 + (L
2 − v0t)2

]
. (7.8)

(bc) Athugum þá að Jmin = J(0) = −4B0Lv0
5R . Athugum einnig hvenær að J(t) = 0 (sem er

reyndar (c)-liðurinn). Fáum þá að:

J(τ) = 0 =⇒ τ = ±
√

5
2

L

v0
. (7.9)

Þar að auki er lim
t→±∞

J(t) = 0+. Grafið verður því:
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8 Heimadæmi 29. febrúar

Dæmi 15. Ímyndum okkur segulsvið, B⃗ = b0tẑ í sívalningshnitum, sem er óháð staðsetningu og vex
línulega með tíma.

(a) Gerið ráð fyrir samhverfu um z-ás og finnið vigurmætti A⃗ sem gefur B⃗ og útfrá því
spanaða rafsviðið. Gera má ráð fyrir að rafmættið sé V = 0.

(b) Sýnið með heildun að lögmál Faradays sé uppfyllt fyrir sérhvern hringferil í z = 0 plani
með miðju á z-ásnum.

Lausn: (a) Þar sem að rafmættið V = 0 þá höfum við að

E⃗ = −∇⃗V − ∂A⃗

∂t
= −∂A⃗

∂t
, B⃗ = ∇⃗ × A⃗. (8.1)

Í sívalningshnitum gefur því seinni jafnan að:

b0tẑ = B⃗ = ∇⃗ × A⃗ =
(1

s

∂Az

∂ϕ
− ∂Aϕ

∂z

)
ŝ +

(
∂As

∂z
− ∂Az

∂s

)
ϕ̂ + 1

s

(
∂

∂s
(sAϕ) − ∂As

∂ϕ

)
ẑ (8.2)

Við sjáum að:

A⃗ = Aϕϕ̂ = 1
2b0stϕ̂ (8.3)

leysir hlutafleiðujöfnuna. Spanaða rafsviðið er þá gefið með:

E⃗ = −∂A⃗

∂t
= −1

2b0sϕ̂. (8.4)

(b) Lögmál Faradays segir síðan að

∇⃗ × E⃗ = −∂B⃗

∂t
(8.5)

En þegar að við tegrum það umhverfis hringferil með geisla s í z = 0 plani með miðju á
z-ásnum þá fæst:

−1
2b0s · 2πs =

∮
E⃗ · dℓ⃗ = − ∂

∂t
ΦB = − ∂

∂t

(
b0t · πs2

)
= −b0πs2. (8.6)

sem stemmir á báðum hliðum jöfnunnar.
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Dæmi 16. Tvær hringlaga straumlykkjur með geisla a og sjálfspanstuðul L liggja í z = 0 plani í
fjarlægð d ≫ a hvor frá annari.

(a) Reiknið víxlspanstuðulinn milli lykjanna í lægstu nálgun í a/d.
(b) Hver er heildarorka kerfisins þegar straumur I fer réttsælis um báðar lykkjurnar?
(c) Hver er heildarorka kerfisins þegar straumur I fer réttsælis um aðra lykkjuna og andsælis

um hina?
(d) Finnið aðdráttarkraftinn sem verkar á milli lykkjanna í (c)-lið.

Lausn: (a) Skoðum lykkjuna sem straumurinn fer alltaf réttsælis um. Segultvípólvægi
hennar er

m⃗ = πa2Iẑ. (8.7)

Segulsviðið frá tvípólnum má reikna samkvæmt:

B⃗tvípóll(r⃗ ) = µ0
4πr3 [3(m⃗ · r̂)r̂ − m⃗] . (8.8)

Við viljum meta segulsviðið í (d, 0, 0) svo við fáum að:

B⃗tvípóll(d, 0, 0) = − µ0
4πd3 m⃗ = −µ0a2I

4d3 ẑ. (8.9)

þar sem að d ≫ a megum við gera þá nálgun að segulsviðið sé um það bil fast inni í gjörðinni
í fjarlægð d svo að flæðið má meta samkvæmt:

ΦB ≈ ±B⃗tvípóll(d, 0, 0) · πa2 = ∓µ0π

4
a4

d3 I, (8.10)

þar sem að efra formerkið samsvarar því að straumurinn fari réttsælis í seinni gjörðinni og
neðra formerkið samsvarar því að straumurinn fari andsælis í seinni gjörðinni. Þar með
ályktum við að víxlspanstuðullinn sé gefinn með:

M = M12 = ∓µ0π

4
a4

d3 . (8.11)

(b)-(c) Þá er heildarorka kerfisins:

E = 1
2LI2 + 1

2LI2 − M12I1I2. (8.12)

þar sem að síðasta formerkið var valið þannig að lykkjurnar finni fyrir fráhrindikraft í (b) en
aðdráttarkraft í (c). Loks notum við sýndarvinnu og skoðum hvað gerist þegar d → d + δ.
Þá fæst að:

Fδ = dW = E[d] − E[d + δ] = −µ0πI2a4

4d3 + µ0πI2a4

4(d + δ)3
d≫δ≈ −3µ0πI2a4

4d4 δ, (8.13)

þar sem að við Taylor-liðuðum í síðasta jafnaðarmerkinu. Samanburður á vinstri og hægri
hlið jöfnunnar gefur því að aðdráttarkrafturinn er

F = 3µ0πI2a4

4d4 . (8.14)
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9 Heimadæmi 7. mars

Dæmi 17. Gefum okkur að í tilteknu efni sé ρf = 0, J⃗f = 0⃗ og µ = µ0 en skautunarsviðið P⃗ (r⃗, t)
gefið fall af tíma og staðsetningu. Sýnið að ef Z⃗(r⃗, t) er lausn á jöfnunni:

∇2Z⃗ − ϵ0µ0
∂2Z⃗

∂t2 = − 1
ϵ0

P⃗

og sviðin E⃗ og B⃗ eru skilgreind með:

E⃗ = ∇⃗ × (∇⃗ × Z⃗) − 1
ϵ0

P⃗ , B⃗ = ϵ0µ0∇⃗ × ∂Z⃗

∂t
,

þá uppfylla sviðin Maxwellsjöfnurnar,

∇⃗ · D⃗ = ρf , ∇⃗ · B⃗ = 0, ∇⃗ × E⃗ = −∂B⃗

∂t
, ∇⃗ × H⃗ = J⃗f + ∂D⃗

∂t
.

Lausn: Við athugum fyrst að með því að nota að:

∇⃗ × (∇⃗ × Z⃗) = ∇⃗
(
∇⃗ · Z⃗

)
− ∇2Z

þá fæst að:

E⃗ = ∇⃗(∇⃗ · Z⃗) − µ0ϵ0
∂2Z⃗

∂t2 .

Við athugum þá að:

∇⃗ · D⃗ = ∇⃗ ·
(
ϵ0E⃗ + P⃗

)
= ϵ0∇⃗ ·

(
∇⃗(∇⃗ · Z⃗) − µ0ϵ0

∂2Z⃗

∂t2 + 1
ϵ0

P⃗

)
= ϵ0∇⃗ ·

(
∇⃗(∇⃗ · Z⃗) − ∇⃗2Z⃗

)
= ϵ0∇⃗ ·

(
∇⃗ × ∇⃗ × Z⃗

)
= 0 = ρf ,

þar sem að við notuðum að rót vigursviðs er sundurleitnilaus. Athugum næst að:

∇⃗ × B⃗ = ∇⃗ ×
(

ϵ0µ0∇⃗ × ∂Z⃗

∂t

)
= 0,

þar sem að við notuðum að rót vigursviðs er sundurleitnilaus. Athugum næst að:

∇⃗ × E⃗ = ∇⃗ ×
(

∇⃗(∇⃗ · Z⃗) − µ0ϵ0
∂2Z⃗

∂t2

)
= −µ0ϵ0∇⃗ × ∂2Z⃗

∂t2 = −∂B⃗

∂t
,

þar sem að í öðru jafnaðarmerkinu notuðum við að stigulsvið er rótlaust. Athugum loks að:

∇⃗ × H⃗ = ∇⃗ ×
( 1

µ0
B⃗

)
= ϵ0∇⃗ × ∇⃗ × ∂Z⃗

∂t
= ∂

∂t

(
ϵ0∇⃗ × ∇⃗ × Z⃗

)
= ∂D⃗

∂t
+ J⃗f .
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Dæmi 18. Tvö sammiðja kúluyfirborð með geisla a > 0 og b > a eru í einsleitu segulsviði B⃗ = B0ẑ.
Kúluyfirborðin eru umlukin tómi og bera jafndrfeifða rafhleðslu, samtals +Q í r = a og
−Q í r = b.
(a) Ákvarðið heildarhverfiþungann um upphafspunktinn í rafsegulsviðinu.
(b) Nú er hægt og rólega dregið úr styrk segulsviðsins niður í núll. Spanað rafsviðið

veldur kraftvægi á kúluyfirborðin sem fær þau til að snúast. Finnið hverfiþunga
hvors kúluyfirborðs um sig í lokin ef gert er ráð yfrir að þau séu kyrrstæð í byrjun.

Lausn: (a) Þurfum að reikna hverfiþungaþéttleikann ℓ⃗ = r⃗ × g⃗ þar sem að g⃗ = ϵ0E⃗ × B⃗

er skriðþungaþéttleiki rafsegulsviðsins. Við höfum þegar að B⃗ = B0ẑ svo við athugum að:

E⃗ = Q

4πϵ0r2 r̂, fyrir a ≤ r ≤ b.

En í kúluhnitum er B⃗ = B0ẑ = B0
(
cos θr̂ − sin θθ̂

)
svo:

ℓ⃗ = r⃗ × g⃗ = rr̂ × ϵ0
Q

4πϵ0r2 r̂ × B0
(
cos θr̂ − sin θθ̂

)
= QB0 sin θ

4πr
θ̂ = QB0 sin θ

4πr

cos θ cos ϕ

cos θ sin ϕ

− sin θ

 .

Til þess að fá heildarhverfiþungann þá tegrum við þéttleikann yfir viðeigandi rúmmálsfrymi:

L⃗heild =
∫ b

a
dr

∫ π

0
dθ

∫ 2π

0
dϕ r2 sin θ

QB0 sin θ

4πr

cos θ cos ϕ

cos θ sin ϕ

− sin θ

 = −1
3QB0(b2 − a2)ẑ.

þar sem að x̂ og ŷ þættir hverfiþungans veittu ekkert framlag því
2π∫
0

dθ cos ϕ =
2π∫
0

dθ sin ϕ = 0.

(b) Skoðum eftirfarandi mynd:

Spanaða rafsviðið má reikna má lögmáli Faradays fyrir sérhverja lykkju umhverfis z-ásinn
þannig að:

Eϕ2π(a sin θ) =
∮

E⃗ · d⃗ℓ = −dΦB

dt
= −π(a sin θ)2 dBz

dt
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því flatarmálsvigurinn er samstefna segulsviðinu. Þetta sýnir því að:

E⃗ = −1
2a sin θ

dBz

dt
ϕ̂.

En þar með höfum við að kraftvægið sem að verkar á kúluskelina fyrir slíka gjörð er:

dτ⃗a = r⃗ × dF⃗E = −1
2a2dQ sin θ

dBz

dt
r̂ × ϕ̂ = −1

2a2dQ sin θ
dBz

dt
θ̂

þar sem að dQ = σdA = Q
4πa2 dA er hleðslan í örsmæðarflatarmálinu dA = a2 sin θdθdϕ en

þetta þurfum við síðan að tegra yfir yfirborð kúluskeljarinnar með geisla a þ.a. við fáum:

τ⃗a =
∫ π

0
dθ

∫ 2π

0
dϕ a2 sin θ

(
− Q

8π
sin θ

dBz

dt

)cos θ cos ϕ

cos θ sin ϕ

− sin θ

 dθdϕ = 1
3Qa2 dBz

dt
ẑ.

En af þessu leiðir að hverfiþunginn er τ⃗a = dL⃗a
dτ svo við ályktum að:

L⃗a = 1
3Qa2B0ẑ

með sömu aðferð fæst L⃗b = −1
3Qb2B0ẑ.
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10 Heimadæmi 14. mars

Dæmi 19. Tveimur flötum rafsegulbylgjum sem ferðast í sömu átt í tómi er lýst með eftirfarandi
bylgjuföllum, þar sem a ∈ C er fasti,

E⃗(1)(z, t) = Re[E0ei(kz−ωt)]x̂, E⃗(2)(z, t) = Re[aE0ei(kz−ωt)]x̂

(a) Reiknið meðalafl á flatareiningu í hvorri bylgju um sig.
(b) Reiknið meðalafl á flatareiningu í bylgjunni sem er lýst með:

E⃗(z, t) = E⃗(1)(z, t) + E⃗(2)(z, t).

(c) Hvaða skilyrði þarf fastinn a ∈ C að uppfylla til að meðalaflið í (b)-lið sé jafnt
summu meðalaflsins fyrir bylgjurnar tvær í (a)-lið?

Lausn: (a) Til þess að reikna meðalafl á flatareiningu þá þurfum við að meta:

I = |⟨S⃗⟩| = |⟨ 1
µ0

E⃗ × B⃗⟩|

Athugum fyrst að rita má:

E⃗(1)(z, t) = |E0| cos(kz − ωt + ϕ1)x̂, E⃗(2)(z, t) = |E0||a| cos(kz − ωt + ϕ2)x̂.

þar sem að ϕ1 samsvarar fasahorni tvinntölunnar E0 og ϕ2 samsvarar fasahorni tvinntölunnar
aE0. Við skulum því byrja á því að sýna hvernig ákvarða má segulsviðið B⃗(z, t) ef að við
þekkjum rafsviðið E⃗(z, t). Samkvæmt Maxwells-jöfnunum er:

∇ × E⃗ = −∂B⃗

∂t

En við athugum að fyrir E⃗(z, t) = E⃗(2)(z, t) fæst þá að:

∇ × E⃗(2) =

∣∣∣∣∣∣∣
î ĵ k̂

∂x ∂y ∂z

E⃗(2),x 0 0

∣∣∣∣∣∣∣ =

 0
−k|E0||a| sin(kz − ωt + ϕ2)

0

 = −
∂B⃗(2)

∂t

En þar með sjáum við eftir að við tegrum með tilliti til tíma t að

B⃗(2)(z, t) = k

ω
|E0||a| cos(kz − ωt + ϕ2)ŷ = 1

c
|E0||a| cos(kz − ωt + ϕ2)ŷ.

Almennt sjáum við með þessari aðferð að fyrir skautunarvigur n̂ fæst:

E⃗(r⃗, t) = |E0| cos
(
k⃗ · r⃗ − ωt + ϕ

)
n̂ gefur að B⃗(r⃗, t) = 1

c
|E0| cos

(
k⃗ · r⃗ − ωt + ϕ

)
k̂ × n̂.

En þar með höfum við sýnt að:

S⃗(2) = 1
µ0

E⃗(2) × B⃗(2) = 1
µ0c

|E0|2|a|2 cos2(k⃗ · r⃗ − ωt + ϕ)ẑ
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Við ályktum því að:

⟨S⃗⟩ = 1
T

∫ T

0
S⃗(2)dt = |E0|2|a|2

µ0c
ẑ

∫ T

0
cos2(k⃗ · r⃗ − ωt + ϕ)dt

= |E0|2|a|2

2µ0c
ẑ

∫ T

0

(
1 + cos

(
2k⃗ · r⃗ − 2ωt + 2ϕ

))
dt

= |E0|2|a|2

2µ0c
ẑ

þar sem að við notuðum að cos(2x) = 2 cos2(x) − 1 og að þegar að við tegrum hornaföll yfir
heilt margfeldi af lotu þess þá fæst núll. En þar með höfum við sýnt að:

I1 = 1
2µ0c

|E0|2, I2 = 1
2µ0c

|a|2|E0|2, I12 = 1
2µ0c

|E0|2|1 + a|2

þar sem að í síðasta jafnaðarmerkinu nýttum við okkur að Re[z] + Re[w] = Re[z + w]. Til
þess að I12 = I1 + I2 þá þarf:

|1 + a|2 = 1 + |a|2

En ef a = α + iβ er tvinntala þá fæst annarsvegar að:

1 + |a|2 = 1 + α2 + β2,

en hinsvegar að

|1 + a|2 = |1 + α + iβ|2 = (1 + α)2 + β2 = 1 + α2 + β2 + 2α

svo við ályktum að þá þarf α = 0 en þá hefur a = iβ einungis þverhluta en engan raunhluta.
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Dæmi 20. Flöt rafsegulbylgja lendir undir innfallshorni θI á sléttum skilfleti í z = 0 milli tveggja
einsleitra efna með ϵ = ϵ1, µ = µ1 ef z < 0 og ϵ = ϵ2, µ = µ2 ef z > 0. Rafsviði
innfallsbylgjunnar er lýst með:

E⃗I(r⃗, t) = Re[E0,Iei(k⃗I ·r⃗−ωt)]ŷ

með k⃗I = kI (sin θI x̂ + cos θI ẑ) þannig að bylgjan er línuskautuð þvert á innfallsplanið.

(a) Ákvarðið segulsvið innfallsbylgjunnar.
(b) Ákvarðið ölduvigrana k⃗R og k⃗T fyrir endurkastsbylgjuna og gegnstreymisbylgjuna.
(c) Notið jaðarskilyrði fyrir rafsegulsviðið í z = 0 til að leiða út Fresneljöfnurnar fyrir línu-

skautun þvert á innfallsplanið:

E0,R =
(1 − αβ

1 + αβ

)
E0,I , E0,T =

( 2
1 + αβ

)
E0,I

þar sem

α = cos θT

cos θI
, β = µ1n2

µ2n1
.

Lausn: Hér er skautunarvigurinn n̂ = ŷ og með sömu aðferð og í dæminu á undan má
ákvarða segulsviðið með því að reikna:

k⃗I × n̂ = (sin θI x̂ + cos θI ẑ) × ŷ = sin θI ẑ − cos θI x̂.

BI(r⃗, t) = 1
v1

Re[E0,Iei(k⃗I ·r⃗−ωt)]k̂I × n̂ = 1
v1

Re[E0,Iei(k⃗I ·r⃗−ωt)] (sin θI ẑ − cos θI x̂) .

Af meðfylgjandi mynd má ákvarða ölduvigrana k⃗R og k⃗T og út frá þeim athugum við að:

k̂R × n̂ = (sin θRx̂ − cos θRẑ) × ŷ = sin θI ẑ + cos θI x̂,
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þar sem að við notuðum í síðasta jafnaðarmerkinu að θI = θR. Höfum einnig að:

k̂T × n̂ = (sin θT x̂ + cos θT ẑ) × ŷ = sin θT ẑ − cos θT x̂

en af þessu leiðir því að:

E⃗R(r⃗, t) = Re[E0,Rei(k⃗R·r⃗−ωt]ŷ, B⃗R(r⃗, t) = 1
v1

Re[E0,Rei(k⃗R·r⃗−ωt](sin θI ẑ + cos θI x̂),

og

E⃗T (r⃗, t) = Re[E0,T ei(k⃗T ·r⃗−ωt]ŷ, B⃗T (r⃗, t) = 1
v2

Re[E0,T ei(k⃗R·r⃗−ωt](sin θT ẑ − cos θT x̂),

notum síðan jaðarskilyrðin E⃗
∥
1 = E⃗

∥
2 og 1

µ1
B⃗

∥
1 = 1

µ2
B⃗

∥
2 í z = 0 til þess að fá að annars vegar

E0,I + E0,R = E0,T

og hinsvegar að:
1
µ1

(− cos θI

v1
E0,I + cos θI

v1
E0,R

)
= 1

µ2v2
cos θT E0,T

seinni jöfnuna má umrita á formið:

E0,I − E0,R = µ1v1
µ2v2

cos θT

cos θI
E0,T = αβE0,T .

En þetta er línulegt jöfnuhneppi fyrir hlutföllunum E0,T /E0,I og E0,R/E0,I sem hefur lausn:
E0,T

E0,I
= 2

α + β
,

E0,R

E0,I
= 1 − αβ

1 + αβ
.

sem var það sem sýna átti.
Ítarefni: Til gamans getum við einnig reiknað endurkaststuðulinn R og gegnstreym-

isstuðulinn T en þeir eru gefnir með:

R = IR

II
=

1
2µ1v1

E2
0,R

1
2µ1v1

E2
0,I

=
(1 − αβ

1 + αβ

)2
,

T = IT

II
=

1
2µ2v2

E2
0,T

1
2µ1v1

E2
0,I

cos θT

cos θI
= αβ

( 2
1 + αβ

)2
.

En af þessu leiðir því að:

R + T =
(1 − αβ

1 + αβ

)2
+ αβ

( 2
1 + αβ

)2
= 1 − 2αβ + α2β2 + 4αβ

(1 + αβ)2 =
(1 + αβ

1 + αβ

)2
= 1.

Brewster-hornið verður síðan þegar að það er ekkert endurkast og R = 0 þ.e. αβ = 1. En
það gerist einmitt þegar:

θBrewster = arcsin
(√

µ2
1n2

2 − µ2
2n2

1
n2

1(µ2
1 − µ2

2)

)
.

Takið eftir að í sértilvikinu þegar µ1 = µ2 þá sést að Brewster-hornið er óskilgreint ef skaut-
unarvigurinn liggur þvert á innfallsplanið. Þessi niðurstaða gildir ekki ef skautunarvigurinn
liggur samsíða innfallsplaninu þá er θB = arctan

(
n2
n1

)
.
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11 Heimadæmi 21. mars

Dæmi 21. Flöt rafsegulbylgja með 40 MHz tíðni og 12,5 W/m2 styrk lendir lóðrétt á yfirborði sjávar.

(a) Hvert er útslagið E0,I í innbylgjunni?
(b) Ákvarðið rafsviðið í endurkastsbylgjunni og í bylgjunni í sjónum undir yfirborðinu.
(c) Reiknið styrk endurkastsbylgjunnar.

Gera má ráð fyrir eftirfarandi eiginleikum saltvatns: ϵ = 72ϵ0, µ = µ0 og σ = 4,0 1
Ω m .

Lausn: (a) Við athugum fyrst að:

I0 = 1
2ϵ0cE2

0,I =⇒ E0,I =
√

2I0
ϵ0c

= 97,0 V/m.

(b) Innbylgjan stefnir þá í k⃗I = kI ẑ þar sem kI = ω
c = 0,83 rad

m . Þá verður endurkasts-
bylgjan í stefnu k⃗R = kRẑ þar sem kR = −kI en gegnstreymisbylgjan með k⃗T = kT ẑ. Rafsviðið
þarf að vera hornrétt á útbreiðsluna svo það er eðlilegt að velja skautunarvigur rafsviðsins
n̂I = x̂. Þar með er

˜⃗
EI(z, t) = Ẽ0,Iei(kIz−ωt)x̂,

˜⃗
BI(z, t) = kI

ω
Ẽ0,Iei(kIz−ωt)ŷ.

˜⃗
ER(z, t) = Ẽ0,Rei(kRz−ωt)x̂,

˜⃗
BR(z, t) = kR

ω
Ẽ0,Rei(kRz−ωt)ŷ

˜⃗
ET (z, t) = Ẽ0,T ei(k̃T z−ωt)x̂,

˜⃗
B(z, t) = k̃T

ω
Ẽ0,T ei(k̃T z−ωtŷ

Fresnel jöfnurnar fyrir þessa uppstillingu eru gefnar með:

Ẽ0,R =
(

1 − β̃

1 + β̃

)
Ẽ0,I , Ẽ0,T =

( 2
1 + β̃

)
Ẽ0,I

þar sem

β̃ = µ1v1
µ2ω

k̃T = c

ω
(kT + iκT )

og

kT = ω

√√√√√µϵ

2

1 +

√
1 +

(
σ

ϵω

)2
, κT = ω

√√√√√µϵ

2

−1 +

√
1 +

(
σ

ϵω

)2


Við athugum að fyrir þessa uppstillingu er σsaltvatn = 4,0 1
Ω m , ϵsaltvatn = 72ϵ0 og µsaltvatn = µ0

þar að auki sem ω = 2πf = 251 MHz þannig að við fáum að:

kT = 25,6 rad
m , κT = 24,6 rad

m , sem gefur β = c

ω
(kT + iκT ) = 30,6 + 29,4i.
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Því höfum við að:

Ẽ0,R =
(

1 − β̃

1 + β̃

)
E0,I = −93,7 − 3,1i

V
m = 93,8e−3,1i V

m ,

Ẽ0,T =
( 2

1 + β̃

)
E0,I = 3,3 − 3,1i

V
m = 4,5e−0,75i V

m .

(c) Við ályktum því að styrkur bylgjunnar er gefinn með:

R = IR

II
=⇒ IR = RII =

∣∣∣∣∣1 − β̃

1 + β̃

∣∣∣∣∣
2

I0 = 0,934I0 = 11,7 W/m2.

Dæmi 21. Rétthyrndur bylgjuleiðari með leiðandi veggjum hefur 4 cm × 3 cm þversnið. Inni í
bylgjuleiðaranum er loft.
(a) (i) Hverjar eru þrjár lægstu þröskuldstíðnir fyrir rafsegulbylgjur í bylgjuleiðaran-

um? Um hvaða sveifluhætti er að ræða?
(ii) Hver er grúpuhraði ráðandi sveifluháttar við þröskuldstíðni næsta sveifluháttar?

(b) Ákvarðið yfirborðshleðsluþéttleikann sem fall af staðsetningu og tíma innan á veggj-
um bylgjuleiðarans í ráðandi sveifluhætti.

Lausn: (ai) Þröskuldstíðnirnar fyrir TE og TM sveifluhætti í bylgjuleiðaranum eru

fmn = c

2

√(
m

a

)2
+
(

n

b

)2

Við fáum því eftirfarandi töflu fyrir fyrstu gildin á (m, n) svo við ályktum að lægstu þrjár

(m, n) (1, 0) (0, 1) (1, 1) (2, 0) (0, 2)
fmn[GHz] 3,75 5,0 6,25 7,5 10

tíðnirnar eru f10 = 3,75 GHz, f0,1 = 5,0 GHz og f11 = 6,25 GHz. Fyrri tvær tíðnirnar geta
einungis verið TE sveifluhættir en f11 getur verið bæði TE eða TM sveifluháttur.

(aii) Grúpuhraðinn er þá gefinn með:

vg = c

√
1 −

(
ωmn

ω

)2
= c

√
1 −

(
fmn

f

)2
= 0,66c.

(b) Fyrir (m, n) = (1, 0) þá höfum við TE sveifluhátt og lausnin er gefin með:

Ez = 0, Bz(x, y) = B0 cos
(

mπx

a

)
cos
(

nπy

b

)
= B0 cos

(
πx

a

)
.

En þetta tvennt ákvaraðar hin gildin á rafsviðinu þannig að:

Ex = i

(ω/c)2 − k2

(
k

∂Ez

∂x
+ ω

∂Bz

∂y

)
= 0,

Ey = i

(ω/c)2 − k2

(
k

∂Ez

∂y
− ω

∂Bz

∂x

)
= iω

π2/a2 B0
π

a
sin
(

πx

a

)
= iωaB0

π
sin
(

πx

a

)
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þar sem við notuðum að (ω/c)2 − k2 = k2
x + k2

y =
(

mπ
a

)2 +
(

nπ
b

)2 = π2

a2 því (m, n) = (1, 0) hér.
Lítum síðan á eftirfarandi mynd:
En þar með sjáum við að samkvæmt lögmáli Gauss má reikna hleðsluþéttleikann á hverri

hlið samkvæmt: ∮
E⃗ · da⃗ = Qinni

ϵ0
=⇒ Ey(x, b)dxdz = 1

ϵ0
σ(x, b)dxdz

svo við ályktum að:

σ(x, b) = iωaϵ0B0
π

sin
(

πx

a

)
Með sömu aðferð sést að:

σ(0, y) = 0, σ(a, y) = 0, σ(x, 0) = − iωaϵ0B0
π

sin
(

πx

a

)
.

Tímahæðið ákvarðast því af því að:

σ(x, b, z, t) = Re[σ(x, b)ei(kz−ωt)] = −ωaϵ0B0
π

sin
(

πx

a

)
sin(kz − ωt),

þar sem k = 1
c

√
ω2 − ω10. Eins fæst að σ(x, 0, z, t) = ωaϵ0B0

π sin
(

πx
a

)
sin(kz − ωt).
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12 Heimadæmi 4. apríl

Dæmi 23. Rafsvari með rafsvörunarstuðul ϵ1 > ϵ0 og segulsvörunarstuðul µ0 fyllir z < 0 hálfrúmið
en í z > 0 hálfrúminu er tóm. Flöt rafsegulbylgja inni í rafsvaranum lendirá z = 0
yfirborðinu undir innfallshorni θ.
(a) Færið rök fyrir því að flöt gegnstreymisbylgja út í tómið í z > 0 sé því aðeins fyrir

hendi að innfallshornið uppfylli θ < arcsin
(√

ϵ0/ϵ1
)
. Fyrir stærri innfallshorn en

þetta fæst fullkomið innra endurkast í rafsvaranum en það er slík hegðun sem gerir
ljósleiðara mögulega.

(b) Við fullkomið innra endurkast með θ > arcsin
(√

ϵ0/ϵ1
)

er rafsviðið reyndar ekki
núll í tominu utan við rafsvarann í z > 0 heldur er þar bylgja á forminu:

E⃗(r⃗, t) = E0e−κz cos(kx − ωt)ŷ, með κ = ω

c

√
ϵ1
ϵ0

sin2 θ − 1, og k = ω

c

√
ϵ1
ϵ0

sin θ.

Þetta er svonefnd hverful bylgja sem berst samsíða yfirborði rafsvarans og hefur
útslag sem fellur með fjarlægð frá yfirborðinu. Finnið tilsvarandi segulsvið þannig
að Maxwelljöfnurnar séu uppfylltar fyrir z > 0.

(c) Ákvarðið Poyntingvigurinn á svæðinu z > 0 og sýnið að meðalafl á flatareiningu sem
hverfula bylgjan ber í z-stefnuna sé núll.

Lausn: (a) Þá gildir að:

n1 sin θ1 = n2 sin θ2 = sin θ2 (12.1)

því n2 = 1 því fyrir utan er tóm. En sin θ2 ≤ 1 til þess að það sé gegnstreymi svo við ályktum
að:

n1 sin θ1 ≤ 1 =⇒ θ1 ≤ arcsin
( 1

n1

)
= arcsin

(
v1
c

)
= arcsin

(√
µ0ϵ0
µ1ϵ1

)
= arcsin

(√
ϵ0
ϵ1

)
.

Sem gefur niðurstöðuna.
(b) Skoðum hverfulu bylgjuna og athugum að Maxwelljafnan ∇⃗ × E⃗ = −∂B⃗

∂t gefur nú að:

∇⃗ × E⃗ = −∂zEyx̂ + ∂xEy ẑ = κE0e−κz cos(kx − ωt)x̂ − kE0e−κz sin(kx − ωt)ẑ. (12.2)

En þá fæst að:

B⃗(r⃗, t) = −
∫

∇⃗ × E⃗ dt = E0
ω

e−κz (κ sin(kx − ωt)x̂ + k cos(kx − ωt)ẑ) (12.3)

(c) Þá er Poynting-vigurinn gefinn með:

S⃗ = 1
µ0

E⃗ × B⃗ = E2
0

µ0ω
e−2κz

(
k cos2(kx − ωt)x̂ − κ cos(kx − ωt) sin(kx − ωt)ẑ

)
. (12.4)

En það gefur því að meðalaflið á flatareiningu er gefið með:

⟨Sz⟩ = 1
T

∫ T

0
dt

(
− 1

µ0

E2
0

ω
e−2κz κ

2 sin(2kx − 2ωt)
)

= 0, (12.5)

⟨Sx⟩ = 1
2µ0

E2
0

ω
e−2κzk. (12.6)
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Dæmi 24. (a) Sýnið að alltaf sé hægt að velja svonefnda Poincarékvörðun, þar sem r⃗ · A⃗(r⃗, t) = 0.
(b) Er alltaf hægt að velja kvörðun þ.a. V (r⃗, t) = 0? Rökstyðjið.
(c) Er alltaf hægt að velja kvörðun þ.a. A⃗(r⃗, t) = 0⃗? Rökstyðjið.

Lausn: (a) Viljum sýna að almennt megi finna λ(r⃗, t) þannig að:

0 = r⃗ · A⃗′ = r⃗ ·
(
A⃗ + ∇⃗λ

)
(12.7)

Í kúluhnitum er A⃗ = Arr̂ + Aθθ̂ + Aϕϕ̂ og ∇⃗λ = ∂λ
∂r r̂ + 1

r
∂λ
∂θ θ̂ + 1

r sin θ
∂λ
∂ϕ ϕ̂ þ.a.

rr̂ ·
(

Arr̂ + Aθθ̂ + Aϕϕ̂ + ∂λ

∂r
r̂ + 1

r

∂λ

∂θ
θ̂ + 1

r sin θ

∂λ

∂ϕ
ϕ̂

)
= r

(
Ar + ∂λ

∂r

)
= 0. (12.8)

En þar með ályktum við að með því að velja:

λ = −
∫

Ardr, (12.9)

þá er Poincaré-kvarðaskilyrðið uppfyllt.

(b) Látum V (r⃗, t) vera gefið mætti. Þá með því að velja:

λ(r⃗, t) =
∫ t

0
V (r⃗, t̃)dt̃, (12.10)

þá fæst samkvæmt undirstöðusetningu stærðfræðigreiningarinnar að

V ′(r⃗, t) = V (r⃗, t) − ∂λ

∂t
= V (r⃗, t) = ∂

∂t

(∫ t

0
V (r⃗, t̃)dt̃

)
= V (r⃗, t) − V (r⃗, t) = 0. (12.11)

Því má alltaf finna slíkan kvarða.

(c) Gerum ráð fyrir að slíkur kvarði sé til þ.a. til sé λ(r⃗, t) þannig að A⃗′ = A⃗ + ∇⃗λ = 0⃗
fyrir gefið A⃗(r⃗, t). En það gæfi þá að B⃗ = ∇⃗ × A⃗′ = ∇⃗ × 0⃗ = 0⃗. En þetta er mótsögn því þá
væri B⃗ = 0⃗ alltaf.
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13 Heimadæmi 11. apríl

Dæmi 25. Punktrafhleðsla q hreyfist með föstum hornhraða ω eftir hring með geisla R í xy-plani
og miðju í upphafspunktinum. Á tímanum t = 0 er hleðslan í punktinum (R, 0, 0).
(a) Ákvarðið Liénard-Wiechert mættin í punktinum (0, 0, z).
(b) Ákvarðið rafsviðið og segulsviðið í upphafspunktinum sem fall af tíma.
(c) Finnið heildarafl rafsegulgeislunarinnar sem berst frá punkthleðslunni ef ωR ≪ c.

Lausn: (a) Almennt eru Liénard-Wiechert mættin gefin með:

V (r⃗, t) = 1
4πϵ0

qc

(r c − r⃗ · v⃗)
, A⃗(r⃗, t) = v⃗

c2 V (r⃗, t). (13.1)

Við byrjum á því að athuga að í r⃗ = (0, 0, z) þá fæst:

r⃗ = r⃗ − w⃗(tr) =

−R cos(ωtr)
−R sin(ωtr)

z

 . (13.2)

Sem gefur því að r =
∣∣ r⃗ ∣∣ =

√
R2 + z2 þar að auki sem

v⃗ = ẇ(tr) =

−ωR sin(ωtr)
ωR cos(ωtr)

0

 , a⃗ = ẅ(tr) =

−ω2R cos(ωtr)
−ω2R sin(ωtr)

0

 . (13.3)

Við athugum að:

r⃗ · v⃗ = ωR2 sin(ωtr) cos(ωtr) − ωR2 sin(ωtr) cos(ωtr) = 0. (13.4)

En þetta gefur því að:

V (0, 0, z, t) = 1
4πϵ0

q√
R2 + z2

, A⃗(0, 0, z, t) = µ0qωR

4π
√

R2 + z2

− sin(ωtr)
cos(ωtr)

0

 . (13.5)

Athugum einnig að hér er r = c(t − tr) þannig að tr = t − 1
c

√
R2 + z2.

(b) Við höfðum sýnt að

E⃗(r⃗, t) = q

4πϵ0

r
( r⃗ · u⃗)3

[(
c2 − v2

)
u⃗ + r⃗ × (u⃗ × a⃗)

]
, u⃗ = c r̂ − v⃗. (13.6)

Við getum sér í lagi sett z = 0 í útleiðslunni frá því áðan þannig að:

r⃗ =

−R cos(ωtr)
−R sin(ωtr)

0

 , u⃗ = c r̂ − v⃗ =

 ωR sin(ωtr) − c cos(ωtr)
−ωR cos(ωtr) − c sin(ωtr)

0

 . (13.7)
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Við athugum þá að:

r⃗ · u⃗ = cR. (13.8)

síðan er

u⃗ × a⃗ = −R2ω3ẑ (13.9)

og þar með

r⃗ × u⃗ × a⃗ = ω3R3 (sin(ωtr)x̂ − cos(ωtr)ŷ) (13.10)

þar með ályktum við að:

E⃗(⃗0, t) = q

4πϵ0

R

(Rc)3

(c2 − ω2R2)

 Rω sin(ωtr) − c cos(ωtr)
−Rω cos(ωtr) − c sin(ωtr)

0

+

 ω3R3 sin(ωtr)
−ω3R3 cos(ωtr)

0




= q

4πϵ0a2


− cos(ωtr) + ωR

c sin(ωtr) +
(

ωR
c

)2
cos(ωtr)

− sin(ωtr) − ωR
c cos(ωtr) +

(
ωR
c

)2
sin(ωtr)

0


Segulsviðið er síðan gefið með:

B⃗(⃗0, t) = 1
c

r̂ × E⃗(⃗0, t) = µ0qω

4πR
ẑ. (13.11)

(c) Nú hefur ögnin miðsóknarhröðun amið = ω2R þannig að Larmor-formúlan gefur að
heildarafl geislunarinnar er gefin með:

PLarmor = µ0q2a2

6πc
= µ0q2ω4R2

6πc
. (13.12)
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Dæmi 26. Tvær agnir með gagnstæðar rafhleðslur ±Q hreyfast eftir x-ásnum á hraða v á móti hvor
annarri. Þær mætast í upphafspunktinum klukkan t = 0 og mynda óhlaðna samsetta
ögn. Finnið seinkuðu mættin V (r⃗, t) og A⃗(r⃗, t).

Lausn: Skoðum fyrst aðra hleðsluna sem hefur hleðslu +q og stefnir frá vinstri til hægri.
Staðsetning hennar er w⃗(t) = v⃗t = (+vt, 0, 0). Skilyrðið r =

∣∣ r⃗ ∣∣ = |r⃗ − w⃗(tr)| = c(t − tr)
gefur því√

(x − vtr)2 + y2 + z2 = c(t − tr) =⇒ (c2 − v2)t2
r − 2(c2t − vx)tr + c2t2 − r2 = 0 (13.13)

sem er 2. stigs margliða fyrir seinkaða tímanum tr sem hefur lausn:

tr = (c2t − vx) ±
√

(c2t − vx)2 + (c2 − v2)(r2 − c2t2)
c2 − v2 , (13.14)

þar sem að við skilgreindum r2 = x2 + y2 + z2. Við veljum neikvæða formerkið en það gefur
okkur að rita megi seinkaða Liénard–Wiechert mættið fyrir ögnina sem:

V1(r⃗, t) = 1
4πϵ0

qc

cr − r⃗ · v⃗
= qc

4πϵ0

1
c2(t − tr) − v(x − vtr) = qc

4πϵ0

1√
(c2t − vx)2 + (c2 − v2)(r2 − c2t2)

.

þar sem að í síðasta jafnaðarmerkinu notuðum við seinkaða tímann tr í jöfnu (13.14). Þetta
gefur því að seinkaða vigurmættið fyrir ögnina er gefið með:

A⃗1(r⃗, t) = v⃗1
c2 V1(r⃗, t) = q

4πcϵ0

1√
(c2t − vx)2 + (c2 − v2)(r2 − c2t2)

v

0
0

 . (13.15)

Með sama hætti má ákvarða seinkaða Liénard–Wiechert mættið fyrir ögn sem hefur hleðslu
−q og ferðast í neikvæða stefnu x-ás. Það gefur því að q → −q og v → −v þannig að:

V2(r⃗, t) = − qc

4πϵ0

1√
(c2t + vx)2 + (c2 − v2)(r2 − c2t2)

, (13.16)

A⃗2(r⃗, t) = q

4πcϵ0

1√
(c2t + vx)2 + (c2 − v2)(r2 − c2t2)

v

0
0

 . (13.17)

Samanlögð vigurmættin fyrir t ≤ 0 eru því gefin með:

V (r⃗, t) = qc

4πϵ0

(
1√

(c2t − vx)2 + (c2 − v2)(r2 − c2t2)
− 1√

(c2t + vx)2 + (c2 − v2)(r2 − c2t2)

)
,

A⃗(r⃗, t) = qv

4πcϵ0

(
1√

(c2t − vx)2 + (c2 − v2)(r2 − c2t2)
+ 1√

(c2t + vx)2 + (c2 − v2)(r2 − c2t2)

)
x̂.

Fyrir t > 0 þá er hinsvegar V = 0 og A⃗ = 0 fyrir alla þá punkta þar sem að ljósboðin hafa
náð að berast. Það er að segja fyrir alla punkta þannig að r < ct þá eru bæði mættin núll en
fyrir alla punkta þar fyrir utan gildir enn ofangreind niðurstaða.
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Auka: Það er fróðlegt að sjá þetta myndrænt eins og Griffiths útskýrir þetta. Áður en að
þær rekast saman má reikna rafsviðið frá hleðslunum samkvæmt útleiðslu Heaviside þannig
að teikna megi sviðslínurnar með eftirfarandi hætti frá núverandi staðsetningu agnanna Það

tekur síðan tíma fyrir upplýsingarnar að berast um það að agnirnar hafi mæst í upphafspunkt-
inum og myndað óhlaðna samsetta ögn. Myndrænt má sýnta þetta með eftirfarandi hætti:
Upplýsingarnar berast um kúlu með geisla r = ct þannig að innan í kúlunni er heildarrafsviðið

(og segulsviðið) núll. Hinsvegar fyrir utan kúluna er sviðið gefið með þeirri lýsingu sem það
hefði haft eins og ef að hleðslurnar hefðu „farið í gegnum hvor aðra“.
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