
Heimadæmi 1: 22. ágúst

Dæmi 2.4.7. Gauss-heildið

Látum A vera samhverft ferningsfylki sem uppfyllir fyrir sérhvern eiginlegan vigur |ψ〉 ∕= 0
að væntigildið sé jákvæð rauntala, 〈ψ|A|ψ〉 > 0. Sýnið að þá gildi að

I(b) =

󰁝 N󰁜

n=1

dxne
− 1

2

󰁓
k,l

xkAklxl+
󰁓
k

bkxk

=
(2π)N/2

󰁳
det(A)

e

1
2

󰁓
k,l

bkA
−1
kl bl

.

Lausn: Fylgjum ráði Bellac og notum breytuskiptin x′ = x−A−1b. Það gefur þá að

xn = x′n +
󰁛

j

A−1
nj bj , þ.e. |x〉 =

󰀏󰀏x′
󰀎
+A−1 |b〉 .

En þá höfum við að 〈b|x〉 =
󰁛

k

bkxk =
󰁛

k

bkx
′
k + bk

󰁛

k,j

A−1
kj bj =

󰀍
b
󰀏󰀏x′

󰀎
+ 〈b|A−1|b〉 .

Eins fáum við að

〈x|A|x〉 =
󰁛

k,l

xkAklxl =
󰁛

k,l,i,j

(x′k +A−1
ki bi)Akl(x

′
l +A−1

lj bj)

=
󰁛

k,l

x′kAklx
′
l +

󰁛

k,l,j

x′kAklA
−1
lj bj +

󰁛

k,l,i

A−1
ki biAklx

′
l +

󰁛

k,l,i,j

A−1
ki biAklA

−1
lj bj

=
󰁛

k,l

x′kAklx
′
l +

󰁛

k,j

x′kδkjbj +
󰁛

l,i

biδlix
′
l +

󰁛

l,i,j

biδilA
−1
lj bj

=
󰀍
x′
󰀏󰀏A

󰀏󰀏x′
󰀎
+ 2

󰀍
b
󰀏󰀏x′

󰀎
+ 〈b|A−1|b〉 ,

þar sem að við notuðum að A er samhverft þ.a. Akl = Alk og að einingarfylkið megi rita sem

δnm =
󰁛

l

AnlA
−1
lm

En þetta sýnir því að í veldisvísisfallinu stendur

−1

2

󰁛

k,l

xkAklxl +
󰁛

k

bkxk = −1

2

󰀃 󰀍
x′
󰀏󰀏A

󰀏󰀏x′
󰀎
+ 2

󰀍
b
󰀏󰀏x′

󰀎
+ 〈b|A−1|b〉

󰀄
+

󰀍
b
󰀏󰀏x′

󰀎
+ 〈b|A−1|b〉

= −1

2

󰀍
x′
󰀏󰀏A

󰀏󰀏x′
󰀎
+

1

2
〈b|A−1|b〉 .

En þar með þurfum við að reikna heildið

I(b) = e
1
2
〈b|A−1|b〉

󰁝 N󰁜

n=1

dx′ne
− 1

2
〈x′|A|x′〉

Ritum nú A á hornalínuformi þannig að 〈x′|A|x′〉 = λn(x
′
n)

2 og notum að í einni vídd gildir að
󰁕
e−

1
2
ax2

dx =
󰁴

2π
a . Notum einnig að det(A) =

󰁔
n λn. En þá höfum við að

I(b) = e
1
2
〈b|A−1|b〉

N󰁜

n=1

󰁝
dx′ne

− 1
2
λn(x′

n)
2
= e

1
2
〈b|A−1|b〉

N󰁜

n=1

󰀕
2π

λn

󰀖1/2

=
(2π)N/2

󰁳
det(A)

e
1
2
〈b|A−1|b〉 .
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Dæmi 2.4.8. Víxlar og margföld eigingildi

Látum A,B,C vera þrjú ferningsfylki af sömu vídd sem njóta

[A,B] = 0 , [A,C] = 0 , [B,C] ∕= 0 .

Sýnið að minnst eitt af eigingildum A sé margfalt.

Lausn: Látum an vera eigingildi A með tilheyrandi eiginvigur |vn〉 þ.a. A |vn〉 = an |vn〉.
Gerum fyrst ráð fyrir að an séu öll ólík og sýnum að það leiði til mótsagnar (ályktum af því að
minnst eitt af eigingildum A þurfi þá að vera margfalt). Þar eð A og B víxlast fæst að

AB |vn〉 = BA |vn〉 = Ban |vn〉 = anB |vn〉 ,

með öðrum orðum þá er vigurinn |un〉 = B |vn〉 eiginvigur A með tilheyrandi eigingildi an. En
þar sem að öll eigingildi A eru ólík þá eru eiginvigrar A sér í lagi línulega óháðir en það þýðir
að |un〉 = B |vn〉 er samstefna |vn〉 svo það getur mest munað fasta bn á þeim, þ.e.a.s.

B |vn〉 = bn |vn〉 ,

svo |vn〉 er einnig eiginvigur B með tileheyrandi eigingildi bn. Eins má segja um C að þar sem að
A og C víxlast eru til cn þannig að C |vn〉 = cn |vn〉 og |vn〉 er einnig eiginvigur C með tilheyrandi
eigingildi cn. Þá má skrifa öll þrjú fylkin á hornalínuformi miðað við grunninn |vn〉, þ.e.

A =
󰁛

n

an |vn〉〈vn| , B =
󰁛

n

bn |vn〉〈vn| , C =
󰁛

n

cn |vn〉〈vn| ,

En þar með fáum við að

BC =

󰀣
󰁛

n

bn |vn〉〈vn|
󰀤󰀣

󰁛

m

cm |vm〉〈vm|
󰀤

=
󰁛

n,m

bncm |vn〉 〈vn|vm〉 〈vn| =
󰁛

n

bncn |vn〉〈vn| = CB.

En það er í mótsögn við að [B,C] ∕= 0. Þar með er a.m.k. eitt af eigingildum A margfalt.

Sýnidæmi um þessa hegðun sem kemur upp síðar í námskeiðinu: Skoðum hverfiþungafylkin

L1 = Lx =
󰄁√
2

󰀳

󰁃
0 1 0
1 0 1
0 1 0

󰀴

󰁄 , L2 = Ly =
󰄁√
2 i

󰀳

󰁃
0 1 0
−1 0 1
0 −1 0

󰀴

󰁄 , L3 = Lz = 󰄁

󰀳

󰁃
1 0 0
0 0 0
0 0 −1

󰀴

󰁄 ,

og smíðum úr þeim virkjann

L2 := L2
x + L2

y + L2
z = 2󰄁2

󰀳

󰁃
1 0 0
0 1 0
0 0 1

󰀴

󰁄 .

Þá gildir að
󰀅
L2, Lx

󰀆
= 0 og

󰀅
L2, Ly

󰀆
= 0 en [Lx, Ly] = i󰄁Lz ∕= 0. Hér er þá A = L2, B = Lx

og C = Ly í setningunni að ofan og við sjáum að A = L2 hefur þrefalt eigingildi λ = 1.
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Heimadæmi 2: 29. ágúst

Dæmi 3.3.5. Grunnur fyrir tvívíð ferningsfylki

Skilgreinum

σ0 = I =

󰀕
1 0
0 1

󰀖
, σ1 = σx =

󰀕
0 1
1 0

󰀖
, σ2 = σy =

󰀕
0 −i
i 0

󰀖
, σ3 = σz =

󰀕
1 0
0 −1

󰀖
.

(a) Sýnið að ef Tr(σnA) = 0 fyrir sérhvert n ∈ {0, 1, 2, 3} þá sé A = 0.

(b) Sýnið að ef A =
3󰁓

n=0
λnσn þá sé λn = 1

2 Tr(Aσn).

(c) Sýnið að mengið {σn} myndi grunn fyrir rúm 2× 2 fylkja.

(d) Hvaða skilyrði þurfa λn að uppfylla ef A er Hermískt?

Lausn: (a) Látum A =

󰀕
a b
c d

󰀖
og fáum

Tr(σ0A) = Tr(A) = a+ d ,

Tr(σ1A) = Tr

󰀗󰀕
0 1
1 0

󰀖󰀕
a b
c d

󰀖󰀘
= Tr

󰀗󰀕
c d
a b

󰀖󰀘
= c+ b ,

Tr(σ2A) = Tr

󰀗󰀕
0 −i
i 0

󰀖󰀕
a b
c d

󰀖󰀘
= Tr

󰀗󰀕
−ic −id
ia ib

󰀖󰀘
= i(b− c) ,

Tr(σ3A) = Tr

󰀗󰀕
1 0
0 −1

󰀖󰀕
a b
c d

󰀖󰀘
= Tr

󰀗󰀕
a b
−c −d

󰀖󰀘
= a− d .

Skilyrðið að Tr(σnA) = 0 gefur því að a+ d = 0 og a− d = 0 en þá er a = d = 0. Einnig höfum
við að c+ b = 0 og b− c = 0 sem gefur að b = c = 0. Því er eina lausnin A = 0.

(b) Nú má rita

A =

3󰁛

n=0

λnσn =

󰀕
λ0 + λ3 λ1 − iλ2

λ1 + iλ2 λ0 − λ3

󰀖

En þar sem að sporið er rásað þá höfum við samkvæmt reikningunum úr (a)-lið að

Tr(Aσ0) = Tr(σ0A) = λ0 + λ3 + λ0 − λ3 = 2λ0 ,

Tr(Aσ1) = Tr(σ1A) = λ1 + iλ2 + λ1 − iλ2 = 2λ1 ,

Tr(Aσ2) = Tr(σ2A) = i (λ1 − iλ2 − λ1 − iλ2) = 2λ2 ,

Tr(Aσ3) = Tr(σ3A) = λ0 + λ3 − λ0 + λ3 = 2λ3 ,

sem gefur niðurstöðuna.
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(c) Til þess að sýna að {σn} myndi grunn fyrir fylkjarúmið þá nægir okkur að sýna tvennt:

(i) hægt er að skrifa sérhvert 2× 2 fylki sem línulega samantekt af {σn}.

(ii) stökin í {σn} eru línulega óháð.

Það fyrra leiðir af því að

1

2
(a+ d)σ0 +

1

2
(b+ c)σ1 +

i

2
(b− c)σ2 +

1

2
(a− d)σ3 =

󰀕
a b
c d

󰀖
.

þ.a. grunnstökin spanna fylkjarúmið. Hið síðara leiðir af því að ef
3󰁓

n=0
λnσn = 0 þá gildir að

󰀕
λ0 + λ3 λ1 − iλ2

λ1 + iλ2 λ0 − λ3

󰀖
=

󰀕
0 0
0 0

󰀖

sem gefur að λ0 = λ3 = 0 og λ1 = λ2 = 0.
(d) Ef A er Hermískt þá gildir að

A† = A =⇒ (λ0σ0 + λ1σ1 + λ2σ2 + λ3σ3)
† = (λ0σ0 + λ1σ1 + λ2σ2 + λ3σ3)

en Pauli-fylkin eru einoka, sjálfoka og Hermísk svo sér í lagi fæst þar sem að þau mynda grunn
fyrir fylkjarúmið að λ̄n = λn svo öll gildin þurfa að vera raungild.
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Dæmi 3.3.7. Levi-Civita táknið

(a) Sýnið að 󰁛

k

󰂃ijk󰂃lmk = δilδjm − δimδjl.

(b) Notið niðurstöðuna hér á undan til að sýna að 󰂓a×󰂓b× 󰂓c = (󰂓a · 󰂓c)󰂓b− (󰂓a ·󰂓b)󰂓c.

(c) Reiknið
󰁓
jk

󰂃ijk󰂃ljk.

(d) Sýnið að
󰂓∇× 󰂓∇× 󰂓A = 󰂓∇(󰂓∇ · 󰂓A)−∇2 󰂓A.

Lausn: (a) Byrjum á því að rifja upp að:

󰂃ijk =

󰀻
󰁁󰀿

󰁁󰀽

+1 ef (ijk) = (123), (231), (312),

−1 ef (ijk) = (213), (132), (321),

0 annars.

Hægt er að tákna 󰂃ijk algegbrulega sem stærðina 󰂃ijk = 1
2(i− j)(j − k)(k − i). Eins er hægt að

tákna Kronecker-delta táknið algebrulega sem δij = (1− (i− j))(1 + (i− j)).

Athugum síðan að:

3󰁛

k=1

󰂃ijk󰂃lmk = 󰂃ij1󰂃lm1 + 󰂃ij2󰂃lm2 + 󰂃ij3󰂃lm3.

Byrjum á því að skoða liðinn 󰂃ij1󰂃lm1. Hann hverfur ef einhver af vísunum i, j, l,m er jafn 1. En
það gefur því einungis fjóra möguleika sem þarf að skoða:

(i, j) = (2, 3) eðá (3, 2), (l,m) = (2, 3) eðá (3, 2) .

Sjáum að í þessum fjórum tilvikum þá hverfa bæði 󰂃ij2󰂃lm2 og 󰂃ij3󰂃lm3. Skoðum því:

• (i, j, l,m) = (2, 3, 2, 3) þá:
3󰁓

k=1

󰂃ijk󰂃lmk = 󰂃231󰂃231 = 1 = δ22δ33 − δ23δ32 = δilδjm − δimδjl.

• (i, j, l,m) = (2, 3, 3, 2) þá:
3󰁓

k=1

󰂃ijk󰂃lmk = 󰂃231󰂃321 = −1 = δ23δ32− δ22δ33 = δilδjm− δimδjl.

• (i, j, l,m) = (3, 2, 2, 3) þá:
3󰁓

k=1

󰂃ijk󰂃lmk = 󰂃321󰂃231 = −1 = δ32δ23− δ33δ22 = δilδjm− δimδjl.

• (i, j, l,m) = (3, 2, 3, 2) þá:
3󰁓

k=1

󰂃ijk󰂃lmk = 󰂃321󰂃231 = 1 = δ33δ22 − δ32δ23 = δilδjm − δimδjl.

Eins fást hin tilvikin með því að skoða 󰂃ij2󰂃lm2 og 󰂃ij3󰂃lm3 (getum þá notað rásaða eiginleikan
til að fara yfir í tilvikin fjögur hér að ofan).

3



(b) Nú má rita krossfeldi tveggja vigra á forminu:

(󰂓a×󰂓b)i =
󰁛

j,k

󰂃ijkajbk

Fáum þá að:

(󰂓a×󰂓b× 󰂓c)i =
󰁛

j,k

󰂃ijkaj(󰂓b× 󰂓c)k

=
󰁛

j,k,l,m

󰂃ijkaj󰂃klmblcm

=
󰁛

j,k,l,m

󰂃ijk󰂃lmkajblcm

=
󰁛

j,l,m

(δilδjm − δimδjl) ajblcm

=
󰁛

j

ajbicj − ajcibj

=

󰀳

󰁃
󰁛

j

ajcj

󰀴

󰁄 bi −

󰀳

󰁃
󰁛

j

ajbj

󰀴

󰁄 ci

= (󰂓a · 󰂓c) bi −
󰀓
󰂓a ·󰂓b

󰀔
ci

(c) Fáum þá
󰁛

j,k

󰂃ijk󰂃ljk =
󰁛

j

(δilδjj − δijδjl) = 3δil − δil = 2δil.

(d) Fáum þá eins og áður

(󰂓∇× 󰂓∇× 󰂓A)i =
󰁛

j,k

󰂃ijk∂j(󰂓∇× 󰂓A)k

=
󰁛

j,k,l,m

󰂃ijk󰂃lmk∂j∂lAm

=
󰁛

j,l,m

(δilδjm − δimδjl) ∂j∂lAm

=
󰁛

j

(∂j∂iAj − ∂j∂jAi)

= ∂i

󰀳

󰁃
󰁛

j

∂jAj

󰀴

󰁄−

󰀳

󰁃
󰁛

j

∂2
j

󰀴

󰁄Ai

= 󰂓∇(󰂓∇ · 󰂓A)−∇2 󰂓A.
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Dæmatími 2: 28. ágúst

Dæmi 2.4.6. Eiginleikar ofanvarpsvirkja

Látum P1 og P2 vera ofanvarpsvirkja á H1 og H2. Sýnið að

(i) P1P2 er ofanvarpsvirki á H1 ∩H2 ef og aðeins ef [P1,P2] = 0.

(ii) P1 + P2 er ofanvarpsvirki ef og aðeins ef P1P2 = 0.

(iii) P1 + P2 − P1P2 er ofanvarpsvirki á H1 ∪H2 ef [P1,P2] = 0.

(iv) Látum Ω vera virkja sem er þannig að P = Ω†Ω er ofanvarpsvirki. Sýnið að þá sé ΩΩ†

einnig ofanvarpsvirki.

Dæmi 2.4.10. Jákvæð fylki

Við segjum að fylki A sé ekki-neikvætt ef fyrir sérhvern eiginlegan vigur |φ〉 ∕= 0 gildir að
væntigildið 〈φ|A|φ〉 ≥ 0. Við segjum að fylkið sé jákvætt ef 〈φ|A|φ〉 > 0.

(a) Sýnið að nauðsynlegt og nægjanlegt skilyrði fyrir því að Hermískt fylki sé ekki-neikvætt
sé að öll eigingildi þess séu ekki-neikvæð.

(b) Sýnið að þó svo að rauntalnafylki sé jákvætt þá sé það ekki nauðsynlega samhverft.

Dæmi 3.3.2. Sporger skautunarsía

(a) Lýsið sporbaugnum sem eftirfarandi skautunarástand skilgreinir

|Φ〉 = λ |x〉+ µ |y〉 , |λ|2 + |µ|2 = 1 .

Með λ = cos θ og µ = sin θeiη. Sýnið að skammás og langás sporbaugsins eru gefnir með

a, b =

󰁹󰁸󰁸󰁷1

2

󰀣
1±

󰁴
1− sin2(2θ) sin2(η)

󰀤

og að sporbaugnum hafi verið snúið um horn ψ þar sem tan(2ψ) = tan(2θ) cos(η).

(b) Sýnið að ástandið

|Φ⊥〉 = −µ |x〉+ λ |y〉 ,

sé hornrétt á |Φ〉 og kemst því ekki í gegn um (λ, µ) skautunarsíuna.

(c) Sýnið að eiginleikar (λ, µ) skautunarsíunnar eru óbreyttir ef í staðinn að við notum

λ = cos θeiηx , µ = sin θeiηy ,

með η = ηy − ηx. Sýnið að þetta gefur sama ofanvarpsvirkja PΦ.
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Dæmi 3.3.4. Aðrar lausnir á jöfnu (3.45) í Bellac

Látum U =

󰀣
e−iψ

2 0

0 ei
ψ
2

󰀤
= e−iψ

2 |0〉〈0|+ ei
ψ
2 |1〉〈1| og skilgreinum |±〉 = 1√

2
(|0〉± |1〉).

(a) Reiknið U |±〉.

(b) Sýnið að U † = U−1.

(c) Hægt er að nota U til að skilgreina hnitaskipti A → A′ = U †AU . Reiknið hvað slík

hnitaskipti gera við Pauli-fylkin σx =

󰀕
0 1
1 0

󰀖
,σy =

󰀕
0 −i
i 0

󰀖
,σz =

󰀕
1 0
0 −1

󰀖
.

(d) Jafna (3.45) í Bellac segir að

cos(α− αx) = cosφ , cos(α− αy) = sinφ .

Sýnið að annað hvort er αy − αx = π
2 eða αy − αx = −π

2 og stingið þessu inn í

σ̃x =

󰀕
0 e−iαx

eiαx 0

󰀖
, σ̃y =

󰀕
0 e−iαy

eiαy 0

󰀖
.

Dæmi 3.3.6. Að taka veldisvísisfall af Pauli-fylkjunum

(a) Látum p̂ ∈ R3 vera einingarvigur og látum 󰂓σ = (σx,σy,σz) þar sem að Pauli-fylkin eru
gefin með

σx =

󰀕
0 1
1 0

󰀖
, σy =

󰀕
0 −i
i 0

󰀖
, σz =

󰀕
1 0
0 −1

󰀖
.

Sýnið að
e−i θ

2
󰂓σ·p̂ = I cos

θ

2
− i (󰂓σ · p̂) sin θ

2
.

(b) Ferningsfylki A er einoka ef að andhverfa þess A−1 = A† þar sem A† er aðokafylkið. Mengi
allra einoka ferningsfylkja er táknað með U(n) :=

󰀋
A ∈ Cn×n |A−1 = A†󰀌. Hlutmengið

SU(n) :=
󰀋
A ∈ Cn×n |A−1 = A†, det(A) = 1

󰀌
er sérstaklega áhugavert.

Látum nú A =
󰀃
a b
c d

󰀄
vera 2 × 2 tvinntalnafylki. Sýnið að til þess að A ∈ SU(2) þá þarf

c = −b og d = a. Með öðrum orðum, sýnið að rita megi sérhvert stak í SU(2) á forminu

A =

󰀕
a b

−b a

󰀖
, þar sem að |a|2 + |b|2 = 1.

(c) Finnið tvö fylki A og B sem eru þannig að eAeB = e(A+B) þó svo að [A,B] ∕= 0.
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Dæmatími 2: 28. ágúst - Lausnir

Dæmi 2.4.6. Eiginleikar ofanvarpsvirkja

Látum P1 og P2 vera ofanvarpsvirkja á H1 og H2. Sýnið að

(i) P1P2 er ofanvarpsvirki á H1 ∩H2 ef og aðeins ef [P1,P2] = 0.

(ii) P1 + P2 er ofanvarpsvirki á H1 ⊕H2 ef og aðeins ef P1P2 = 0.

(iii) P1 + P2 − P1P2 er ofanvarpsvirki á H1 ∪H2 ef [P1,P2] = 0.

(iv) Látum Ω vera virkja sem er þannig að P = Ω†Ω er ofanvarpsvirki. Sýnið að þá sé
ΩΩ† einnig ofanvarpsvirki.

Lausn: Fyrir ofanvarpsvirkja gildir að

P 2 = P , ásamt P † = P.

Stundum er þægilegra að sýna að P †P = P til að sýna að P sé ofanvarpsvirki.

(i) (⇒) Látum P1P2 vera ofanvarpsvirkja á H1 ∩H2 þar sem að bæði P1 og P2 eru ofanvarps-
virkjar. Þá fæst að

P1P2 = (P1P2)
2 = (P1P2)

†(P1P2) = P †
2P

†
1P1P2 = P †

2P1P2 = P †
2 (P1P2)

† = P †
2P

†
2P

†
1 = P2P1.

(⇐) Gerum nú ráð fyrir að [P1, P2] = 0 og sýnum að þá sé P1P2 ofanvarpsvirki. Fáum

(P1P2)
†(P1P2) = P †

2P
†
1P1P2 = P2P

2
1P2 = P1P2.

(ii) (⇒) Látum P1 + P2 vera ofanvarpsvirkja. Þá fæst að

P1 + P2 = (P1 + P2)
2 = P 2

1 + P 2
2 + P1P2 + P2P1 = P1 + P2 + {P1, P2}

svo {P1, P2} = 0.

(⇐) Hin áttin sýnir að ef {P1, P2} = 0 þá sé P1 + P2 ofanvarpsvirki.

Sýnum loks að ef P1 og P2 eru ofanvarpsvirkjar þá gildir að:

{P1, P2} = 0 ⇐⇒ P1P2 = 0.

Athugum að ef {P1, P2} = 0 þá fæst

0 = (I − P1)(P1P2 + P2P1) = (I − P1)P2P1 = P2P1 − P1P2P1

En það þýðir að P2P1 = P1P2P1 svo

(P2P1)
2 = P2P1P2P1 = P2P2P1 = P2P1

svo P2P1 er ofanvarpsvirki en þá er bæði [P1, P2] = {P1, P2} = 0 svo P1P2 = P2P1 = 0.

(iii) Fáum að

(P1 + P2 − P1P2)
2 = P 2

1 + P1P2 − P 2
1P2 + P2P1 + P 2

2 − P2P1P2 − P1P2P1 − P1P2P2 + P1P2P1P2

= P1 + P2 − P1P2.

(iv) Látum P = Ω†Ω. Þá er sér í lagi P † = (Ω†Ω)† = Ω†Ω = P .
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Dæmi 2.4.10. Jákvæð fylki

Við segjum að fylki A sé ekki-neikvætt ef fyrir sérhvern eiginlegan vigur |φ〉 ∕= 0 gildir að
væntigildið 〈φ|A|φ〉 ≥ 0. Við segjum að fylkið sé jákvætt ef 〈φ|A|φ〉 > 0.

(a) Sýnið að nauðsynlegt og nægjanlegt skilyrði fyrir því að Hermískt fylki sé ekki-
neikvætt sé að öll eigingildi þess séu ekki-neikvæð.

(b) Sýnið að þó svo að rauntalnafylki sé jákvætt þá sé það ekki nauðsynlega samhverft.

Lausn: (a) Þar sem að A er Hermískt hefur það raungild eigingildi samkvæmt rófsetningunni
og við getum því ritað það á hornalínuformi

A =
󰁛

n

an |n〉〈n| , |ψ〉 =
󰁛

n

ψn |n〉

Þá fæst að

〈ψ|A|ψ〉 =
󰀣
󰁛

i

ψ∗
i 〈i|

󰀤󰀳

󰁃
󰁛

j

aj |j〉〈j|

󰀴

󰁄
󰀣
󰁛

k

ψk |k〉
󰀤

=
󰁛

i,j,k

ψ∗
i ajψk 〈i|j〉 〈j|k〉

=
󰁛

i,j,k

ψ∗
i ajψkδijδjk

=
󰁛

k

|ψk|2ak ≥ 0

Þetta þarf sér í lagi að gilda fyrir hvaða |ψ〉 sem er. Sjáum þá með því að velja |ψ〉 = |n〉 að við
höfum sýnt að an ≥ 0 fyrir öll n en það þýðir einmitt að nauðsynlegt og nægjanlegt skilyri sé
að öll eigingildi A séu jákvæð.

(b) Skoðum fylkið:

A =

󰀕
1 1
−1 1

󰀖
.

Það er jákvætt því

xTAx =
󰀃
x y

󰀄󰀕 1 1
−1 1

󰀖󰀕
x
y

󰀖
=

󰀃
x y

󰀄󰀕 x+ y
−x+ y

󰀖
= x(x+ y) + y(−x+ y) = x2 + y2 ≥ 0 .

Hinsvegar er

AT =

󰀕
1 −1
1 1

󰀖
∕= A

þar að auki eru eigingildi A gefin með 1± i.
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Dæmi 3.3.2. Sporger skautunarsía

(a) Lýsið sporbaugnum sem eftirfarandi skautunarástand skilgreinir

|Φ〉 = λ |x〉+ µ |y〉 , |λ|2 + |µ|2 = 1 .

(b) Sýnið að ástandið

|Φ⊥〉 = −µ |x〉+ λ |y〉 ,

sé hornrétt á |Φ〉 og kemst því ekki í gegn um (λ, µ) skautunarsíuna.

(c) Sýnið að eiginleikar (λ, µ) skautunarsíunnar eru óbreyttir þó að við notum

λ = cos θeiηx , µ = sin θeiηy ,

með η = ηy − ηx. Sýnið að þetta gefur sama ofanvarpsvirkja PΦ.

Lausn: (a) Þar sem að |λ|2 + |µ|2 = 1 þá getum við valið

λ = cos θ, µ = sin θe−iη

Þá verða x og y þættir rafsviðsins gefnir með eftirfarandi stikun
󰀕
Ex(t)
Ey(t)

󰀖
= Re

󰀗󰀕
E0λe

−iωt

E0µe
−iωt

󰀖󰀘
=

󰀕
E0 cos θ cos(ωt)

E0 sin θ cos(ωt− η)

󰀖
.

Viljum núna skoða grafið sem stikunin af punktunum (Ex(t), Ey(t)) skilgreinir.

−1 −0.5 0 0.5 1

−0.5

0

0.5

Ey(t)/E0

E
x
(t
)/
E

0

−1 −0.5 0 0.5 1

−0.5

0

0.5

Ey(t)/E0

E
x
(t
)/
E

0

Mynd 1: Á vinstri myndinni er búið að teikna stikunina fyrir θ = π
5 og η = π

4 . Á þeirri hægri er
búið að teikna í rauðu eftir að snúið hefur verið um horn ψ þar sem að tan(2ψ) = tan(2θ) cos(η).

Til þess að ákvarða langás og skammás sporbaugsins sem og hornið sem þarf að snúa spor-
baugnum um þá athugum við að venjulegur sporbaugur uppfyllir

x2

a2
+

y2

b2
= 1.

Nú ætlum við að snúa sporbaugnum um horn ψ en til þess má nota snúningsfylkið

R(ψ) =

󰀕
cosψ − sinψ
sinψ cosψ

󰀖
.
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Andhverfan er snúningur í öfuga átt, þ.e. fylkið R(−ψ) = R−1(ψ) =

󰀕
cosψ sinψ
− sinψ cosψ

󰀖
. Skoðum

þá að
󰀕
x̃
ỹ

󰀖
= R(ψ)

󰀕
x
y

󰀖
þ.e.

󰀕
x
y

󰀖
= R(−ψ)

󰀕
x̃
ỹ

󰀖
=

󰀕
cosψ x̃+ sinψ ỹ
− sinψ x̃+ cosψ ỹ

󰀖
.

Þetta gefur því að jafna sporbaugsins verður:

1 =
x2

a2
+

y2

b2
=

(cosψ x̃+ sinψ ỹ)2

a2
+

(− sinψ x̃+ cosψ ỹ)2

b2

=

󰀕
cos2 ψ

a2
+

sin2 ψ

b2

󰀖
x̃2 +

󰀕
sin2 ψ

a2
+

cos2 ψ

b2

󰀖
ỹ2 +

󰀕
1

a2
− 1

b2

󰀖
sin(2ψ)x̃ỹ.

En þetta gefur því að rita megi sporbaug sem snúið hefur verið um horn ψ á forminu

1 = αx̃2 + βỹ2 + γx̃ỹ,

með

α =

󰀕
cos2 ψ

a2
+

sin2 ψ

b2

󰀖
, β =

󰀕
sin2 ψ

a2
+

cos2 ψ

b2

󰀖
, γ =

󰀕
1

a2
− 1

b2

󰀖
sin(2ψ).

Fyrir 󰂓E =

󰀕
Ex

Ey

󰀖
þá fæst að

E2
x = cos2 θ cos2(ωt),

ExEy =
1

2
sin(2θ) cos(ωt) cos(ωt− η)

=
1

2
sin(2θ) cos(η) cos2(ωt) +

1

4
sin(2θ) sin(2ωt) sin(η),

E2
y = sin2 θ cos2(ωt− η)

= sin2 θ

󰀗
cos2(ωt) cos(2η) + sin2(η) +

1

2
sin(2ωt) sin(2η)

󰀘

Skrifum þetta þá út og sjáum að til þess að

1 = αE2
x + βE2

y + γExEy

= β sin2(θ) sin2(η) + cos2(ωt)
󰁫
α cos2 θ + β sin2 θ cos(2η) +

γ

2
sin(2θ) cos(η)

󰁬

+ sin(2ωt)

󰀗
β

2
sin2 θ sin(2η) +

γ

4
sin(2θ) sin(η)

󰀘
.

Af þessu sjáum við að

β =
1

sin2 θ sin2 η
, γ = − 4 cos(η)

sin(2θ) sin2(η)
, α =

1 + cot2 η

cos2 θ

En þetta gefur okkur því jöfnuhneppið:
󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

cos2 ψ
a2

+ sin2 ψ
b2

= α = 1+cot2 η
cos2 θ

,
sin2 ψ
a2

+ cos2 ψ
b2

= β = 1
sin2 θ sin2 η

,
󰀃

1
a2

− 1
b2

󰀄
sin(2ψ) = γ = − 4 cos(η)

sin2(θ) sin2(δ)
.
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Með því að umrita aðeins efri tvær þannig að
󰀫

1
a2

+
󰀃
1
b2

− 1
a2

󰀄
sin2 ψ = α,

1
a2

+
󰀃
1
b2

− 1
a2

󰀄
cos2 ψ = β

sem gefur okkur því að mismunurinn er
󰀕

1

a2
− 1

b2

󰀖
cos(2ψ) = α− β

og því fæst að

tan(2ψ) =
γ

α− β
= tan(2θ) cos(η).

(b) Fáum þá að

〈Φ⊥|Φ〉 = (−µ 〈x|+ λ 〈y|) (λ |x〉+ µ |y〉) = −µλ 〈x|x〉 − µ2 〈x|y〉+ λ2 〈y|x〉+ λµ 〈y|y〉 = 0.
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Dæmi 3.3.4. Aðrar lausnir á jöfnu (3.45) í Bellac

Látum U =

󰀣
e−iψ

2 0

0 ei
ψ
2

󰀤
= e−iψ

2 |0〉〈0|+ ei
ψ
2 |1〉〈1| og skilgreinum |±〉 = 1√

2
(|0〉± |1〉).

(a) Reiknið U |±〉.

(b) Sýnið að U † = U−1.

(c) Hægt er að nota U til að skilgreina hnitaskipti A → A′ = U †AU . Reiknið hvað slík

hnitaskipti gera við Pauli-fylkin σx =

󰀕
0 1
1 0

󰀖
,σy =

󰀕
0 −i
i 0

󰀖
,σz =

󰀕
1 0
0 −1

󰀖
.

(d) Jafna (3.45) í Bellac segir að

cos(α− αx) = cosφ , cos(α− αy) = sinφ .

Sýnið að annað hvort er αy − αx = π
2 eða αy − αx = −π

2 og stingið þessu inn í

σ̃x =

󰀕
0 e−iαx

eiαx 0

󰀖
, σ̃y =

󰀕
0 e−iαy

eiαy 0

󰀖
.

Lausn: (a) Fáum að

U |±〉 =
󰀓
e−iψ

2 |0〉〈0|+ ei
ψ
2 |1〉〈1|

󰀔󰀕
1√
2
(|0〉± |1〉)

󰀖
=

e−iψ/2

√
2

󰀓
|0〉± eiψ |1〉

󰀔
.

(b) Fáum að U †U = I svo U † = U−1.
(c) Við fáum þá að

U †σxU =

󰀕
0 eiψ

e−iψ 0

󰀖
∕= σx, U †σyU =

󰀕
0 −ieiψ

ie−iψ 0

󰀖
∕= σy, U †σzU =

󰀕
1 0
0 −1

󰀖
= σz.

Notum þáttunarreglur hornafalla. Athugum að

cos(α− αx)− cosφ = −2 sin

󰀕
α− αx + φ

2

󰀖
sin

󰀕
α− αx − φ

2

󰀖
= 0

sem gefur annað hvort að α − αx + φ = 0 eða að α − αx − φ = 0. Athugum síðan næst að
sinφ = cos

󰀃
π
2 − φ

󰀄
sem gefur þá eins með þáttunarreglum hornafalla að

cos(α− αy)− sinφ = cos(α− αy)− cos
󰀓π
2
− φ

󰀔
= −2 sin

󰀕
α− αy +

π
2 − φ

2

󰀖
sin

󰀕
α− αy − π

2 + φ

2

󰀖
= 0

sem gefur þá að annað hvort er α− αy +
π
2 − φ eða α− αy + φ− π

2 . Nú verða αx og αy að vera
óháð α svo af þessum fjórum hugsanlegu möguleikum koma aðeins tveir til greina:

αy − αx =
π

2
, eða αy − αx =

π

2
.

Veljum αx = 0 og þá gefa fylkin í lýsingunni í fyrra tilviki að σ̃x = σx og σ̃y = σy. En seinna:

σ̃x =

󰀕
0 1
1 0

󰀖
, σ̃y =

󰀕
0 i
−i 0

󰀖
.

8



Dæmi 3.3.6. Að taka veldisvísisfall af Pauli-fylkjunum

(a) Látum p̂ ∈ R3 vera einingarvigur og látum 󰂓σ = (σx,σy,σz) þar sem að Pauli-fylkin
eru gefin með

σx =

󰀕
0 1
1 0

󰀖
, σy =

󰀕
0 −i
i 0

󰀖
, σz =

󰀕
1 0
0 −1

󰀖
.

Sýnið að
e−i θ

2
󰂓σ·p̂ = I cos

θ

2
− i (󰂓σ · p̂) sin θ

2
.

(b) Ferningsfylki A er einoka ef að andhverfa þess A−1 = A† þar sem A† er aðokafylkið.
Mengi allra einoka ferningsfylkja er táknað með U(n) :=

󰀋
A ∈ Cn×n |A−1 = A†󰀌.

Hlutmengið SU(n) :=
󰀋
A ∈ Cn×n |A−1 = A†, det(A) = 1

󰀌
er sérstaklega áhugavert.

Látum nú A =
󰀃
a b
c d

󰀄
vera 2× 2 tvinntalnafylki. Sýnið að til þess að A ∈ SU(2) þá

þarf c = −b og d = a. Með öðrum orðum, sýnið að rita megi sérhvert stak í SU(2)
á forminu

A =

󰀕
a b

−b a

󰀖
, þar sem að |a|2 + |b|2 = 1.

(c) Finnið tvö fylki A og B sem eru þannig að eAeB = e(A+B) þó svo að [A,B] ∕= 0.

Lausn: (a) Við byrjum á því að athuga að

e−i θ
2
(󰂓σ·p̂) =

+∞󰁛

n=0

󰀃
−i θ2󰂓σ · p̂

󰀄n

n!
=

+∞󰁛

n=0

󰀃
−i θ2

󰀄n

n!
(󰂓σ · p̂)n

Byrjum á því að athuga að

(󰂓σ · p̂)2 = (σxp̂x + σyp̂y + σz p̂z)
2

= p̂2xσ
2
x + p̂2yσ

2
y + p̂2zσ

2
z + p̂xp̂y{σx,σy}+ p̂xp̂z{σx,σz}+ p̂yp̂z{σy,σz}

= |p̂|2I = I.

þar sem að við notuðum að fyrir Pauli-fylkin gildir að þau eru sjálfoka þ.a. σ2
x = σ2

y = σ2
z = I.

Þar að auki höfum við að {σx,σy} = {σx,σz} = {σy,σz} = 0. En þar með sjáum við að fyrir
sléttar tölur n = 2k gildir að

(󰂓σ · p̂)2k = I, en fyrir oddatölur (󰂓σ · p̂)2k+1 = (󰂓σ · p̂) .

Þar með fáum við að

e−i θ
2
(󰂓σ·p̂) =

+∞󰁛

n=0

󰀃
−i θ2

󰀄n

n!
(󰂓σ · p̂)n

= I

+∞󰁛

k=0

󰀃
−i θ2

󰀄2k

(2k)!
+ 󰂓σ · p̂

+∞󰁛

k=0

(−i θ2)
2k+1

(2k + 1)!

= I

+∞󰁛

k=0

(−1)k
󰀃
θ
2

󰀄2k

(2k)!
− i (󰂓σ · p̂)

+∞󰁛

k=0

(−1)k
󰀃
θ
2

󰀄2k+1

(2k + 1)!
= I cos

󰀕
θ

2

󰀖
− i (󰂓σ · p̂) sin

󰀕
θ

2

󰀖
.
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(c) Látum

A =

󰀕
iπ 0
0 −iπ

󰀖
, B =

󰀕
iπ 1
0 −iπ

󰀖
.

Þá er

[A,B] = AB −BA

=

󰀕
iπ 0
0 −iπ

󰀖󰀕
iπ 1
0 −iπ

󰀖
−
󰀕
iπ 0
0 −iπ

󰀖󰀕
iπ 1
0 −iπ

󰀖

=

󰀕
−π2 iπ
0 −π2

󰀖
−

󰀕
−π2 −iπ
0 −π2

󰀖

=

󰀕
0 2πi
0 0

󰀖
∕= 0

svo A og B víxlast ekki. Nú má hornalínugera B þannig að rita megi:

B = PΛP−1 =

󰀕
1 i

2π
0 1

󰀖󰀕
iπ 0
0 −iπ

󰀖󰀕
1 − i

2π
0 1

󰀖
.

En þar með er

eB = PeΛP−1 =

󰀕
1 i

2π
0 1

󰀖󰀕
eiπ 0
0 e−iπ

󰀖󰀕
1 − i

2π
0 1

󰀖
=

󰀕
−1 0
0 −1

󰀖
.

Síðan er

eA =

󰀕
eiπ 0
0 e−iπ

󰀖
=

󰀕
−1 0
0 −1

󰀖
.

Höfum síðan að

C = A+B =

󰀕
2πi 1
0 −2πi

󰀖

Þá er

C = UDU−1 =

󰀕
1 i

4π
0 1

󰀖󰀕
2πi 0
0 −2πi

󰀖󰀕
1 − i

4π
0 1

󰀖
.

og þar með er

eA+B = eC = UeDU−1 =

󰀕
1 i

4π
0 1

󰀖󰀕
e2πi 0
0 e−2πi

󰀖󰀕
1 − i

4π
0 1

󰀖
=

󰀕
1 0
0 1

󰀖
.

En þar með fæst að

eA+B =

󰀕
1 0
0 1

󰀖
=

󰀕
−1 0
0 −1

󰀖󰀕
−1 0
0 −1

󰀖
= eAeB.
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Heimadæmi 3: 5. september

Dæmi 4.4.2. Hnikunaraðferðin

Væntigildi vigursins |ϕ〉 er skilgreint sem stærðin 〈H〉ϕ = 〈ϕ|H|ϕ〉
〈ϕ|ϕ〉 .

(a) Sýnið að ef væntigildið hefur útgildi í |ϕ〉 = |ϕ〉e þá sé |ϕ〉e eiginvigur H.

(b) Látum |ϕ〉 = |ϕ(α)〉. Sýnið að ef

∂ 〈H〉ϕ(α)
∂α

󰀏󰀏󰀏󰀏
α=α0

= 0,

þá sé Em ≤ 〈H〉ϕ(α0)
ef α0 samsvarar lággildi en 〈H〉ϕ(α0)

≤ EM ef α0 er hágildi.

(c) Skoðum nú tvívítt kerfi með Hamilton-virkja á forminu

H =

󰀕
a+ c b
b a− c

󰀖
.

Látum síðan

|φ(α)〉 =
󰀕
cos

󰀃
α
2

󰀄

sin
󰀃
α
2

󰀄
󰀖
,

og ákvarðið gildin á α0 með því að leita að útgildum 〈ϕ(α)|H|ϕ(α)〉.

Lausn: (a) Hnikum fellinu 〈H〉|ψ〉 með því að skoða |ψ〉 = |ψ0〉 + δ |ϕ〉 þar sem að |ψ0〉 er
útgildi fellisins. Við fáum þá að

〈H〉ψ =
〈ψ|H|ψ〉
〈ψ|ψ〉 =

(〈ψ0|+ δ 〈ϕ|)H (|ψ0〉+ δ |ϕ〉)
(〈ψ0|+ δ 〈ϕ|) (|ψ0〉+ δ |ϕ〉)

=
1

〈ψ0|ψ0〉+ 2δ 〈ψ0|ϕ〉+O(δ2)

󰀃
〈ϕ0|H|ϕ0〉+ 2δ 〈ϕ|H|ψ0〉+O

󰀃
δ2
󰀄󰀄

=
1

〈ψ0|ψ0〉

󰀕
1− 2δ

〈ψ0|ϕ〉
〈ψ0|ψ0〉

+O(δ2)

󰀖󰀃
〈ϕ0|H|ϕ0〉+ 2δ 〈ϕ|H|ψ0〉+O

󰀃
δ2
󰀄󰀄

=
〈ψ0|H|ψ0〉
〈ψ0|ψ0〉

+ 2δ

󰀕
〈ϕ|H|ψ0〉
〈ψ0|ψ0〉

− 〈ψ0|H|ψ0〉 〈ϕ|ψ0〉
〈ψ0|ψ0〉2

󰀖

þar sem í þriðju línu notuðum við (1+x)n ≈ 1+nx. Afleiða af felli F [f ] er síðan skilgreind þ.a.

δF [f ] = lim
󰂃→0

F [f + 󰂃g]− F [f ]

󰂃

og til þess að finna útgildi þá krefjumst við að fellaafleiðan hverfi en það þýðir að
󰀕

〈ϕ|H|ψ0〉
〈ψ0|ψ0〉

− 〈ψ0|H|ψ0〉 〈ϕ|ψ0〉
〈ψ0|ψ0〉2

󰀖
= 0

fyrir öll |ϕ〉 en með smá umritun þá sést að það gefur einmitt að

H |ψ0〉 =
〈ψ0|H|ψ0〉
〈ψ0|ψ0〉

|ψ0〉 = 〈H〉ψ0
|ψ0〉

1



svo sér í lagi er útgildið eigingildi á H en þar með þarf það nauðsynlega að vera stærsta eða
minnsta gildið.

(b) Þetta leiðir beint af (a).
(c) Við athugum fyrst að

〈H〉ϕ(α) = 〈ϕ(α)|H|ϕ(α)〉 =
󰀃
cos

󰀃
α
2

󰀄
sin

󰀃
α
2

󰀄󰀄󰀕a+ c b
b a− c

󰀖󰀕
cos

󰀃
α
2

󰀄

sin
󰀃
α
2

󰀄
󰀖

=
󰀃
cos

󰀃
α
2

󰀄
sin

󰀃
α
2

󰀄󰀄󰀕(a+ c) cos
󰀃
α
2

󰀄
+ b sin

󰀃
α
2

󰀄

b cos
󰀃
α
2

󰀄
+ (a− c) sin

󰀃
α
2

󰀄
󰀖

= (a+ c) cos2(α2 ) + 2b sin
󰀃
α
2

󰀄
cos

󰀃
α
2

󰀄
+ (a− c) sin2(α2 )

= a+ b sin(α) + c cos(α).

sem gefur því að

∂ 〈H〉ϕ(α)
∂α

= b cos(α)− c sin(α) = 0 =⇒ tan(α0) =
b

c
.

Athugum síðan að eigingildi A má ákvarða samkvæmt

0 = det(A− λI) = det

󰀕
a+ c− λ b

b a− c− λ

󰀖
= (a+ c− λ)(a− c− λ)− b2

sem gefur að

λ± = a±
󰁳

b2 + c2.

En það er einmitt það sem að við fáum ef að við stingum α0 = arctan(b/c) inn í 〈H〉ϕ(α0)
.
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Dæmi 3.3.7. Tímaþróun fyrir tveggja kerfi með tvö eiginástönd

Lítum á Hamilton-virkjan

H = 󰄁
󰀕
A B
B −A

󰀖

miðað við grunninn |+〉 = ( 10 ) og |−〉 = ( 01 ). Eigingildi og eiginvigrar H eru gefnir með:

E± = ±󰄁
󰁳

A2 +B2, |χ±〉 = cos
θ

2
|±〉± sin

θ

2
|∓〉 .

(a) Látum |ϕ(t)〉 = c+(t) |+〉 + c−(t) |−〉 tákna ástandið við tíma t. Ákvarðið diffur-
jöfnuhneppið sem að stuðlarnir c+(t) og c−(t) njóta.

(b) Látum upphafssástandið vera gefið með:

|ϕ(t = 0)〉 = |ϕ(0)〉 = λ |χ+〉+ µ |χ−〉

með |λ|2+ |µ|2 = 1 og þar sem að |χ±〉 tákna eiginástönd Hamilton-virkjans. Sýnið
að rita megi

c+(t) = λ e−iΩt/2 cos θ
2 − µ eiΩt/2 sin θ

2

með Ω = 2
√
A2 +B2. Sýnið að auki að c̈+(t) +

󰀃
Ω
2

󰀄2
c+(t) = 0.

(c) Gerum ráð fyrir að c+(0) = 0. Ákvarðið λ og µ upp að fasa sem og c+(t). Sýnið að
líkurnar á að finna kerfið í ástandi |+〉 við tíma t eru gefnar með

p+(t) = sin2 θ sin2
󰀕
Ωt

2

󰀖

(d) Sýnið að ef hinsvegar c+(t = 0) = 1 þá sé

c+(t) = cos
Ωt

2
− i cos θ sin

Ωt

2
.

Finnið p+(t) og p−(t) í þessu tilfelli.

Lausn: (a) Skoðum þá Schrödinger-jöfnuna

i󰄁
d |ψ(t)〉

dt
= H |ψ(t)〉

sem gefur þá á fylkjaformi
󰀫
i󰄁ċ+(t) = 󰄁(Ac+(t) +Bc−(t)) ,

i󰄁ċ−(t) = 󰄁(−Ac−(t) +Bc+(t)) .

(b) Rifjum upp (og leggjum áherslu á) að fyrir eiginástönd Hamilton-virkjans þá gildir að

e−
i
󰄁Ht |χ+〉 = e−

i
󰄁E+t |χ+〉

3



og eins fyrir |χ−〉 og þar sem að tímaþróun í kerfi er lýst með þessum hætti þá er þægilegast að
tímaþróa kerfi miðað við eiginástönd Hamilton-virkjans. Fáum því hér að:

|ϕ(t)〉 = λe−iE+t/󰄁 |χ+〉+ µe−iE−t/󰄁 |χ−〉 ,

sem gefur því að

c+(t) = 〈+|ϕ(t)〉

= 〈+|
󰀕
λe−iE+t/󰄁 cos

θ

2
|+〉+ µe−iE−t/󰄁 cos

θ

2
|+〉

󰀖

= λ e−iΩt/2 cos θ
2 − µ eiΩt/2 sin θ

2 .

Með því að taka tvær tímaafleiður af ofangreindri niðurstöðu höfum við

c̈+(t) = −
󰀕
Ω

2

󰀖
c+(t) .

(c) Þá viljum við reikna:

p+(t) = |〈+|ϕ(t)〉|2.

Nú gefur upphafsskilyrðið okkur að λ cos θ
2 − µ sin θ

2 = 0 en þetta gefur að λ = µ tan θ
2 svo

1 = |λ|2 + |µ|2 = |µ|2(1 + tan2
θ

2
) =

|µ|2

cos2 θ
2

Þannig að upp að fasahorni γ höfum við ákvarðað að

µ = cos
θ

2
eiγ

en þá er λ = sin θ
2e

iγ og við getum tekið eiγ út fyrir sviga í |ϕ(t)〉. Setjum því γ = 0 til ein-
földunar og án skerðingar á víðgildi því heildarfasahorn breytir ekki eðlisfræðilegum eiginleikum
ástandsins. Stingum þessu inn og fáum:

p+(t) = |〈+|ϕ(t)〉|2 = |c+(t)|2

=

󰀕
λe−iΩt/2 cos

θ

2
− µeiΩt/2 sin

θ

2

󰀖󰀕
λe−iΩt/2 cos

θ

2
− µeiΩt/2 sin

θ

2

󰀖

= sin2
θ

2
cos2

θ

2

󰀓
e−iΩt/2 − eiΩt/2

󰀔󰀓
eiΩt/2 − e−iΩt/2

󰀔

=
1

4
sin2 θ(−2i) sin

󰀕
Ωt

2

󰀖
(2i) sin

󰀕
Ωt

2

󰀖

= sin2 θ sin2
Ωt

2
.

(d) Þetta er bara það sama og (c) nema við skiptum á hlutverki á p+(t) og p−(t).
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Heimadæmi 4: 12. september

Dæmi 4.4.7. Schrödinger vs Heisenberg

Látum A(t) vera tímaháðan Hermískan virkja miðað við Schrödinger ramma. Látum
Hamilton-virkjann H(t) einnig vera tímaháðan. Sýnið að

i󰄁
dAH

dt
= [AH(t), HH(t)] + i󰄁

󰀕
∂A(t)

∂t

󰀖

H

,

þar sem að HH(t) og (∂A/∂t)H eru fengnir út frá H(t) og (∂A(t)/∂t) með sömu um-
myndunarreglu og fyrir A(t).

Lausn: Rifjum upp að tímaþróunarvirkinn er hér gefinn með:

U(t, t0) = e−
i
󰄁 (t−t0)H , og þá andhverfa hans með U−1(t, t0) = e

i
󰄁 (t−t0)H .

En því fæst

i󰄁
dAH

dt
= i󰄁

d

dt

󰀃
U−1AU

󰀄

= i󰄁
󰀓
e

i
󰄁 (t−t0)HA(t)e−

i
󰄁 (t−t0)H

󰀔

= i󰄁
󰀕
i

󰄁
e

i
󰄁 (t−t0)HHAe−

i
󰄁 (t−t0)H + e

i
󰄁 (t−t0)H ∂A

∂t
e−

i
󰄁 (t−t0)H − i

󰄁
e

i
󰄁 (t−t0)HAHe−

i
󰄁 (t−t0)H

󰀖

= e
i
󰄁 (t−t0)H [A,H]e−

i
󰄁 (t−t0)H + i󰄁e

i
󰄁 (t−t0)H ∂A

∂t
e−

i
󰄁 (t−t0)H

= [AH , HH ] + i󰄁
󰀕
∂A

∂t

󰀖

H

þar sem að við notuðum að

[AH , HH ] =
󰀅
U−1AU,U−1HU

󰀆
= U−1AUU−1HU − U−1HUU−1AU = U−1[A,H]U.

1



Dæmi 5.5.1. Þverstaðlaður grunnur eiginástanda

Sýnið með strangheiðarlegum reikningum að eiginvigrarnir |χs〉 sem eru gefnir með

|χs〉 =
1√
N

N−1󰁛

n=0

einδs |ϕn〉 , δs =
2πs

N
, s ∈ {0, 1, . . . , N − 1}

mynda þverstaðlaðan grunn fyrir ástandsrúmið.

Lausn: Fáum

〈χs|χℓ〉 =
1

N

N−1󰁛

n=0

N−1󰁛

m=0

ei(mδℓ−nδs) 〈ϕn|ϕm〉󰁿 󰁾󰁽 󰂀
= δnm

=
1

N

N−1󰁛

n=0

ein(δℓ−δs)

=
1

N

N−1󰁛

n=0

e
2πin
N

(ℓ−s)

Athugum fyrst að ef ℓ = s þá eru allir N liðirnir í summunni jafnir 1 svo þá er 〈χs|χs〉 = 1.
Hinsvegar ef ℓ ∕= s þá er þetta kvótaröð með kvóta x = e

2πi
N

(ℓ−s) en fyrir kvótaröð gildir að

N−1󰁛

n=0

xn =
1− xN

1− x

svo fyrir ℓ ∕= s höfum við því

〈χs|χℓ〉 =
1

N

1− e2πi(ℓ−s)

1− e
2πi(ℓ−s)

N

= 0

því ℓ− s er heiltala svo e2πi(ℓ−s) = 0.

2



Heimadæmi 5: 19. september

Dæmi 6.5.1. Þinfeldið er óháð grunninum

Sýnið að þinfeldið |ϕ⊗ ψ〉 ∈ H = H1 ⊗H2 sem er skilgreint fyrir eftirfarandi tvö ástönd

|ϕ〉 =
N󰁓

n=1
cn |n〉 ∈ H1 og |ψ〉 =

M󰁓
m=1

dm |m〉 ∈ H2 samkvæmt

|ϕ⊗ ψ〉 =
󰁛

n,m

cndm |n⊗m〉 .

Lausn: Látum |ñ〉 vera annan grunn á H1. Þá má finna línulega vörpun þannig að tengja
megi saman grunnvigrana samkvæmt

|n〉 =
󰁛

ñ

Rñn |ñ〉

En þetta þýðir þá sér í lagi að

|ϕ〉 =
N󰁛

n=1

cn |n〉 =
N󰁛

n=1

N󰁛

ñ=1

cnRñn |ñ〉 =
󰁛

ñ

c̃ñ |ñ〉

þar sem að við skilgreindum c̃ñ =
N󰁓

n=1
cnRñn. Eins má gera fyrir grunnvigrana í H2 sem gefur

|ϕ⊗ ψ〉 =
󰁛

n,m

cndm |n⊗m〉 =
󰁛

n,m

cndm

󰀏󰀏󰀏󰀏󰀏
󰁛

ñ

Rñn |ñ〉 ⊗
󰁛

m̃

Sm̃m |m̃〉
󰀮

=
󰁛

n,m,ñ,m̃

cndmRñnSm̃m |ñ⊗ m̃〉

=
󰁛

ñ,m̃

c̃ñdm̃ |ñ⊗ m̃〉 .

sem sýnir að niðurstaðan er óháð vali á grunni.

Dæmi 6.5.2. Þinfeldi tveggja 2× 2 fylkja

Látum A =

󰀕
a b
c d

󰀖
og B =

󰀕
α β
γ δ

󰀖
. Reiknið þinfeldið C = A⊗B.

Lausn: Þá er

A⊗B =

󰀕
aB bB
cB dB

󰀖
=

󰀳

󰁅󰁅󰁃

aα aβ bα bβ
aγ aδ bγ bδ
cα cβ dα dβ
cγ cδ dγ dδ

󰀴

󰁆󰁆󰁄.

1



Dæmatími 5: 18. september

Dæmi 6.5.3. Eiginleikar ástandsvirkja

(a) Fylkjastökin ρii = 〈i|ρ|i〉, ρjj = 〈j|ρ|j〉, ρij = 〈i|ρ|j〉 og ρji = 〈j|ρ|i〉 má nota til að smíða

2×2 fylkið A =

󰀕
ρii ρij
ρji ρjj

󰀖
. Sýnið að (i) ρii ≥ 0 og ρjj ≥ 0, (ii) detA = ρiiρjj−|ρij |2 ≥ 0.

(b) Gerum nú ráð fyrir að ρ lýsi hreinu ástandi þannig að rita megi ρ = |ϕ〉〈ϕ|. Gerum þar að
auki ráð fyrir að rita megi

ρ = λρ′ + (1− λ)ρ′′, þar sem 0 ≤ λ ≤ 1.

Sýnið að þá gildir að ρ = ρ′ = ρ′′.

Dæmi 6.5.4. Fínvik og Zeeman-hrif fyrir raftvennd

Skoðum raftvennd sem samanstendur af rafeind og jáeind, andeind rafeindarinnar.

(a) Reiknið orku grunnástandsins sem fall af grunnástandi vetnisatómsins E0 = −13,6 eV.

(b) Pauli-fylkin eru gefin með σx =

󰀕
0 1
1 0

󰀖
, σy =

󰀕
0 −i
i 0

󰀖
, σz =

󰀕
1 0
0 −1

󰀖
, miðað við

grunninn
󰀝
|+〉 =

󰀕
1
0

󰀖
, |−〉 =

󰀕
0
1

󰀖󰀞
. Reiknið þinfeldin:

σx ⊗ σx , σy ⊗ σy , σz ⊗ σz .

og útskýrið hvað hver þessara virkja gerir við ástöndin |++〉 , |+−〉 , |−+〉 og |−−〉.

(c) Ákvarðið hvað 󰂓σ1⊗󰂓σ2 = σx⊗σx+σy ⊗σy +σz ⊗σz gerir við |++〉 , |+−〉 , |−+〉 og |−−〉.

(d) Skilgreinum nú eftirfarandi fjóra vigra:

|I〉 = |++〉 , |II〉 = 1√
2
(|+−〉+ |−+〉) , |III〉 = |−−〉 , |IV 〉 = 1√

2
(|+−〉 − |−+〉) .

Sýnið að þessi ástönd myndi þverstaðlaðan grunn fyrir Hilbert-rúmið H12 = H1 ⊗ H2.
Sýnið þar að auki að þetta séu eiginvigrar 󰂓σ1 · 󰂓σ2 og ákvarðið tilheyrandi eigingildi þeirra.

(e) Skilgreinum nú ofanvarpsvirkjana PA og PB á hlutrúmin sem samsvara eigingildum 󰂓σ1 · 󰂓σ2.
Skrifið sér í lagi ofanvarpsvirkjana á forminu λI + µ󰂓σ1 · 󰂓σ2.

(f) Skoðum nú virkja á forminu P12 = 1
2 (I + 󰂓σ1 · 󰂓σ2). Sýnið að P12 sé ofanvarpsvirki og að

P12 víxlar á spuna í sæti 1 og 2, þ.e. sýnið að

P12 |++〉 = |++〉 , P12 |+−〉 = |−+〉 , P12 |−+〉 = |+−〉 , P12 |−−〉 = |−−〉 .

(g) Skilgreinum nú Hamilton-virkja sem er gefinn með

H0 = E0I +A󰂓σ1 · 󰂓σ2 ,

þar sem A > 0. Ákvarðið eigingildi og eiginvigra H0.

(h) Nú er kveikt á einsleitu segulsviði 󰂓B í z-stefnu. Sýnið að Hamilton-virkinn sé gefinn með:

H = H0 −
e󰄁
2m

B (σz ⊗ I − I ⊗ σz) .

Skilgreinum svo e󰄁
2mB = −Ax og ákvarðið eigingildi H sem fall af x og rissið upp mynd.

1



Dæmi 6.5.5. Spunabylgjur og seguleindir

Einfalt líkan af járnseglun lýsir henni sem keðju af lengd N ≫ 1 þar sem að hver eind keðjunnar
hefur spuna 1

2 og bilið á milli einda keðjunnar er ℓ. Einfaldasta nálgunin er að gera ráð fyrir að
einungis nágrannaverkun skipti máli. Þá má skrifa Hamilton-fall keðjunnar á eftirfarandi formi:

H =
1

2
NAI − 1

2

N−1󰁛

n=0

󰂓σn ⊗ 󰂓σn+1.

(a) Færið rök fyrir því að öll eigingildi H séu jákvæð. Sýnið að grunnástandið |Φ0〉 samsvarar
því að annaðhvort vísi allir spunarnir upp eða allir spunarnir niður.

(b) Sýnið að rita megi

H = NAI −A

N−1󰁛

n=0

Pn,n+1 = A

N−1󰁛

n=0

(I − Pn,n+1)

þar sem að Pn,n+1 =
1
2(I + 󰂓σn ⊗ 󰂓σn+1) er ofanvarpsvirkinn frá því í lið (f) í dæmi 6.5.4.

(c) Skilgreinum nú ástandið

|ψn〉 = |+++ . . .+−+ . . .+〉
sem er þ.a. það er |−〉 í n-ta sæti en öll hin sætin eru |+〉. Ákvarðið hvað H gerir við |ψn〉.

(d) Skilgreinum nú ástöndin:

|ks〉 :=
N−1󰁛

m=0

eiksnℓ |ψn〉 , með ks =
2πs

Nℓ
, s ∈ {0, 1, . . . , N − 1} .

Sýnið að |ks〉 séu eiginvigrar H og ákvarðið tilheyrandi eigingildi Ek. Sýnið auk þess að
fyrir lítil gildi á ks þá er sveiflutíðni bylgjunnar ωk = 1

󰄁Ek ∼ k2s . Þetta skammtaástand
|ks〉 lýsir seguleindinni.

Dæmi 5.5.5. Vetnisjónin H+
2

Skoðum einfalt líkan af vetnisjóninni H+
2 sem samanstendur af tveimur róteindum sem liggja í

x = ± r
2 á x-ás. Umhverfis þær hringsólar rafeind.

(a) Gerum nú ráð fyrir að rafeindin sé einnig á x-ás. Skrifið niður tilheyrandi rafmætti, U(x)
fyrir rafeindina og teiknið graf sem sýnir rafmættið sem fall af x.

(b) Lýsa má kerfinu með Hamilton-virkja á forminu:

H =

󰀕
E0 −A
−A E0

󰀖
.

Þar sem að E0 táknar grunnástand vetnisatómsins. Ákvarðið eigingildi og eiginvigra H.
Útskýrið hvers vegna H tekur þetta formkorn. Hvernig ber að túlka A? Útskýrið hvers
vegna við höfum að A = A(r) og færið rök fyrir því að A(r) sé vaxandi fall þar að auki
sem að lim

r→∞
A(r) = 0.

(c) Látum E±(r) tákna eigingildi H sem samsvara eiginástöndum rafeindarinnar. Færið rök
fyrir því að heildarorka jónarinnar sé þá gefin með E′

±(r) = E±(r) +
e2

4πε0r
.

(d) Nú er A(r) gefið með A(r) = ce2

4πε0
e−r/b. Skilgreinum frávikið frá grunnástandi vetnisatóms-

ins sem stærðina ∆E(r) := E′
+(r)−E0 og sýnið að lággildið sé ∆E(r0) =

e2

4πε0r0

󰀓
1− b

r0

󰀔
.

2



Heimadæmi 5: 26. september

Dæmi 6.5.7. Bell-ójafnan og E(â, b̂)

Látum |Φ〉 = 1√
2
(|+−〉 − |−+〉) = 1√

2
(|01〉 − |10〉).

(a) Reiknið sveifluvíddirnar a+−, a−+ og a−− í samræmi við jöfnu (6.46) í bókinni.

(b) Sýnið að
E(â, b̂) = 〈Φ|(󰂓σ · â)⊗ (󰂓σ · b̂)|Φ〉 = −â · b̂.

Lausn:

(a) Athugum fyrst að
󰀏󰀏󰀏+, b̂

󰁈
= cos θ

2 |+〉+ sin θ
2 |−〉 ,

󰀏󰀏󰀏−, b̂
󰁈
= − sin θ

2 |+〉+ cos θ
2 |−〉 .

En það þýðir þá að

a++ =
󰀓
〈+|⊗

󰁇
+, b̂

󰀏󰀏󰀏
󰀔 1√

2
(|+−〉 − |−+〉) = 1√

2
sin θ

2 ,

a+− =
󰀓
〈+|⊗

󰁇
−, b̂

󰀏󰀏󰀏
󰀔 1√

2
(|+−〉 − |−+〉) = 1√

2
cos θ

2 ,

a−+ =
󰀓
〈−|⊗

󰁇
+, b̂

󰀏󰀏󰀏
󰀔 1√

2
(|+−〉 − |−+〉) = − 1√

2
cos θ

2 ,

a−− =
󰀓
〈−|⊗

󰁇
−, b̂

󰀏󰀏󰀏
󰀔 1√

2
(|+−〉 − |−+〉) = 1√

2
sin θ

2 .

(b) Nú er

󰂓σ · â = σxax + σyay + σzaz =

󰀕
az ax − iay

ax + iay −az

󰀖
.

Með beinhörðum reikningum höfum við því að

E(â, b̂) = 〈Φ|(󰂓σ · â)⊗ (󰂓σ · b̂)|Φ〉

=
1

2
(〈01|− 〈10|)

󰀕󰀕
az ax − iay

ax + iay −az

󰀖
⊗

󰀕
bz bx − iby

bx + iby −bz

󰀖󰀖
(|01〉 − |10〉)

=
1

2

󰀳

󰁅󰁅󰁃

0
1
−1
0

󰀴

󰁆󰁆󰁄

T󰀳

󰁅󰁅󰁃

azbz az(bx − iby) (ax − iay)bz (ax − iay)(bx − iby)
az(bx + iby) −azbz (ax − iay)(bx + iby) −bz(ax − iay)
(ax + iay)bz (ax + iay)(bx − iby) −azbz −az(bx − iby)

(ax + iay)(bx + iby) −bz(ax + iay) −az(bx + iby) azbz

󰀴

󰁆󰁆󰁄

󰀳

󰁅󰁅󰁃

0
1
−1
0

󰀴

󰁆󰁆󰁄

=
1

2

󰀃
0 1 −1 0

󰀄

󰀳

󰁅󰁅󰁃

az(bx − iby)− (ax − iay)bz
−azbz − (ax − iay)(bx + iby)
(ax + iay)(bx − iby) + azbz
−bz(ax + iay) + az(bx + iby)

󰀴

󰁆󰁆󰁄

=
1

2
(−azbz − (ax − iay)(bx + iby)− (ax + iay)(bx − iby)− azbz)

= −azbz − axbx − ayby

= −â · b̂.

1



Þórðardæmi frá lokaprófi árið 2020

Tveir skammtabitar eru í ástandinu

|ψ〉 = 1√
30

(|00〉+ 2 |01〉+ 3 |10〉+ 4 |11〉) .

(i) Sýnið að þetta ástand sé flækt.

(ii) Ákvarðið þéttleikafylkið sem lýsir ástandi fyrri skammtabitans ρ1 = Tr2 ρ þar sem
ρ = |ψ〉〈ψ|. Ákvarðið einnig þéttleikafylki ρ2 = Tr1 ρ. Finnið eigingildi fylkjanna.

(iii) Finnið líkur þess að finna fyrri skammtabitann í ástandinu

|a〉 = 1√
2
(|0〉+ |1〉).

Finnið tilsvarandi líkur fyrir seinni skammtabitann. Hverjar eru líkur þess að finna
báða skammtabitana í ástandinu |a〉?

Lausn:

(i) Rifjum upp að fyrir tveggja bita skammtakerfi þá gildir að

a |00〉+ b |01〉+ c |10〉+ d |11〉

er flækt þ.þ.a.a. det
󰀃
a b
c d

󰀄
∕= 0.

Okkur nægir því að athuga að det

󰀗
1√
30

󰀕
1 2
3 4

󰀖󰀘
= − 1

15 ∕= 0 svo þetta ástand er flækt.

(ii) Þéttleikafylkið er gefið með

ρ = |ψ〉〈ψ| = 1

30

󰀳

󰁅󰁅󰁃

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

󰀴

󰁆󰁆󰁄.

Almennt má reikna hlutsporið fyrir tveggja bita ástand með

ρ =

󰀳

󰁅󰁅󰁃

a b c d
e f g h
i j k l
m n r s

󰀴

󰁆󰁆󰁄, ρ1 = Tr2 ρ =

󰀕
a+ f c+ h
i+ n k + s

󰀖
, ρ2 = Tr1 ρ =

󰀕
a+ k b+ l
e+ r f + s

󰀖
.

Útskýrum aðeins hvernig að þetta var fengið. Samkvæmt skilgreiningunni er

ρ1 = Tr2 ρ = I ⊗ 〈0| ρ I ⊗ |0〉+ I ⊗ 〈1| ρ I ⊗ |1〉 .

En nú má skrifa virkjana á fylkjaformi sem

I ⊗ |0〉 =
󰀕
1 0
0 1

󰀖
⊗

󰀕
1
0

󰀖
=

󰀳

󰁅󰁅󰁃

1 0
0 0
0 1
0 0

󰀴

󰁆󰁆󰁄, I ⊗ |1〉 =
󰀕
1 0
0 1

󰀖
⊗

󰀕
0
1

󰀖
=

󰀳

󰁅󰁅󰁃

0 0
1 0
0 0
0 1

󰀴

󰁆󰁆󰁄.

2



Þar með höfum við að

ρ1 =

󰀕
1 0 0 0
0 0 1 0

󰀖
ρ

󰀳

󰁅󰁅󰁃

1 0
0 0
0 1
0 0

󰀴

󰁆󰁆󰁄+

󰀕
0 1 0 0
0 0 0 1

󰀖
ρ

󰀳

󰁅󰁅󰁃

0 0
1 0
0 0
0 1

󰀴

󰁆󰁆󰁄 =

󰀕
a+ f c+ h
i+ n k + s

󰀖
.

Eins má reikna ρ2 með þessum hætti. Í þessu dæmi höfum við því

ρ1 =
1

30

󰀕
5 11
11 25

󰀖
, ρ2 =

1

30

󰀕
10 14
14 20

󰀖
.

Eigingildi beggja þessara fylkja eru

λ± =
1

30
(15±

√
221).

(iii) Við athugum að

|aa〉 = 1

2
(|00〉+ |01〉+ |10〉+ |11〉) .

svo

|a〉〈a| = 1

2

󰀕
1 1
1 1

󰀖
, |aa〉〈aa| = 1

4

󰀳

󰁅󰁅󰁃

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

󰀴

󰁆󰁆󰁄.

En það gefur að

Tr(ρ1 |a〉〈a|) = Tr

󰀕
1

30

󰀕
5 11
11 25

󰀖
· 1
2

󰀕
1 1
1 1

󰀖󰀖
= Tr

󰀕
1

60

󰀕
16 16
36 36

󰀖󰀖
=

16 + 36

60
=

13

15
.

Tr(ρ2 |a〉〈a|) = Tr

󰀕
1

30

󰀕
10 14
14 20

󰀖
· 1
2

󰀕
1 1
1 1

󰀖󰀖
= Tr

󰀕
1

60

󰀕
24 24
34 34

󰀖󰀖
=

24 + 34

60
=

29

30
.

Tr(ρ |aa〉〈aa|) = Tr

󰀳

󰁅󰁅󰁃
1

30

󰀳

󰁅󰁅󰁃

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16

󰀴

󰁆󰁆󰁄 · 1
4

󰀳

󰁅󰁅󰁃

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

󰀴

󰁆󰁆󰁄

󰀴

󰁆󰁆󰁄 =
5

6
.

Takið einnig eftir að 13
15 · 29

30 ≈ 0, 838 en 5
6 ≈ 0, 833.

3



Miðmisserispróf í Skammtafræði 1

Dæmi 1: Rafeind er í spunaástandi

|φ〉 = B ((1− 2i) |+〉+ 2 |−〉) ,

þar sem |±〉 eru stöðluð eiginástönd virkjans Sz.

(a) Ákvarðið fastann B þannig að spunaástandið sé staðlað.

(b) Reiknið væntigildi mælistærðanna Sz og Sx í þessu ástandi.

(c) Hvaða mæligildi koma til greina fyrir Sz og hvaða líkur eru á hverju um sig?

(d) Mæling er framkvæmd á Sx strax á eftir mælingu á Sz. Hvaða mæligildi koma til
greina í seinni mælingunni og með hvaða líkum?

Lausn: (a) Við athugum að

1 = 〈φ|φ〉 = |B|2
󰁫
|1− 2i|2 + 22

󰁬
= 9|B|2 =⇒ |B| = 1

3
.

(b) Væntigildin má síðan reikna með

〈φ|Sz|φ〉 =
󰄁
2
〈φ|σz|φ〉 =

󰄁
18

󰀃
1 + 2i 2

󰀄󰀕1 0
0 −1

󰀖󰀕
1− 2i

2

󰀖
=

󰄁
18

.

〈φ|Sx|φ〉 =
󰄁
2
〈φ|σz|φ〉 =

󰄁
18

󰀃
1 + 2i 2

󰀄󰀕0 1
1 0

󰀖󰀕
1− 2i

2

󰀖
=

2󰄁
9
.

(c) Hugsanleg gildi á Sz eru ±󰄁
2 . Líkurnar eru

Upp:
󰀏󰀏󰀏󰀏
1

3
(1− 2i)

󰀏󰀏󰀏󰀏
2

=
5

9
, Niður:

󰀏󰀏󰀏󰀏
2

3

󰀏󰀏󰀏󰀏
2

=
4

9
.

(d) Ef við þekkjum spuna í z-stefnu þá vitum við ekkert um spuna í x-stefnu. Því eru hugsanleg
gildi sem við getum mælt ±󰄁

2 með helmingslíkum á hvoru um sig.

1



Heimadæmi 8: 17. október

Dæmi 9.7.1. Heisenberg ójafnan

(a) Látum ϕ(x) vera þverstaðlað ástand og skilgreinum

I(α) =

󰁝 +∞

−∞
dx

󰀏󰀏󰀏󰀏xϕ(x) + α
dϕ

dx

󰀏󰀏󰀏󰀏
2

≥ 0.

þar sem α ∈ R. Sýnið að

I(α) = 〈X2〉 − α+ α2〈K2〉

og sýnið að

〈X2〉〈K2〉 ≥ 1

4
.

(b) Hvernig er hægt að breyta ofangreindum rökum til þess að sýna að ∆x∆k ≥ 1
2 .

(c) Sýnið að ef jafnaðarmerkið gildir þá sé ϕ Gauss-bylgjupakki.

Lausn: Við fáum með beinum reikningum að

I(α) =

󰁝 +∞

−∞
dx

󰀏󰀏󰀏󰀏xϕ(x) + α
dϕ

dx

󰀏󰀏󰀏󰀏
2

=

󰁝 +∞

−∞
dx

󰀗
x2|ϕ|2 + α2dϕ

∗

dx

dϕ

dx
+ αxϕ∗dϕ

dx
+ αxϕ

dϕ∗

dx

󰀘
.

Með því að hluttegra þannig að allar afleiðurnar endi á ϕ en ekki á ϕ∗ og henda öllum jaðarlið-
unum þá fáum við

I(α) =

󰁝 +∞

−∞
dxϕ∗

󰀗
x2ϕ− α2d

2ϕ

dx2
+ αx

dϕ

dx
− α

d

dx
(xϕ)

󰀘

= 〈X2〉+ α2

󰄁2
〈P 2〉 − α

þar sem að við notuðum að P = −i󰄁 d
dx . Þar sem að I(α) ≥ 0 þá fáum við með því að finna

lággildi sem fall af α að

I ′(α) =
2α

󰄁2
〈P 2〉 − 1

!
= 0 =⇒ α =

󰄁2

2〈P 2〉
En það gefur því að lággildið er tekið í

I

󰀕
󰄁2

2〈P 2〉

󰀖
= 〈X2〉+ 󰄁2

4〈P 2〉 −
󰄁2

2〈P 2〉 ≥ 0 =⇒ 〈X2〉〈P 2〉 ≥ 󰄁2

4
.

Með því að hliðra um 〈X〉 og 〈P 〉 þá fæst að

∆X∆P ≥
󰁳

〈X2〉〈P 2〉 ≥ 󰄁
2
.

Athugum loks að jafnaðarmerkið gefur að

I(α) = 0 =⇒ xϕ(x) + α
dϕ

dx
= 0 =⇒ d

dx

󰀓
αe

1
2α

x2
ϕ(x)

󰀔
= 0 =⇒ ϕ(x) = ϕ0 e

− 1
2α

x2
.

1



Dæmi 2.

Ástandi agnar sem hreyfist í einni vídd er lýst með ket-vigrinum |ψ〉. Virkjarnir U(λ) og
W (σ) eru skilgreindir þannig að

〈x|U(λ)|ψ〉 = eiλxψ(x) ,

〈x|W (σ)|ψ〉 = ψ(x+ σ) ,

þar sem að λ,σ ∈ R og ψ(x) = 〈x|ψ〉.

(a) Sýnið að U og W séu einoka virkjar.

(b) Finnið sjálfoka virkja A(λ) og B(σ) þannig að U(λ) = eiA(λ) og W (σ) = eiB(σ).

(c) Sýnið að [U(λ),W (σ)] = 0 þá og því aðeins að λσ = 2πn þar sem n ∈ Z.

Lausn: Við athugum fyrst að

〈x|U †(λ)|ψ〉 = e−iλxψ(x), 〈x|W †(σ)|ψ〉 = ψ(x− σ)

En af því leiðir beint að U †U = I = W †W . Þá eru virkjarnir A og B gefnir með

A(λ) = λX, B(σ) =

og loks athugum við að

[U(λ),W (σ)] =

2



Heimadæmi 9: 24. október

Dæmi 1.

Rúmspeglun má lýsa með virkjanum Π sem verkar á föll samkvæmt Πf(x) = f(−x).

(a) Sýnið að Π sé sjálfoka. Hver eru eigingildi Π?

(b) Við segjum að virki A sé jafnstæður ef ΠAΠ = A. Sýnið að jafnstæður virki víxlar
við rúmspeglunarvirkjann, þ.e.a.s. að [Π, A] = 0.

(c) Látum nú spunalausa ögn með massa m hreyfast í mætti V (x) í einni vídd. Hvaða
skilyrði þarf V (x) að uppfylla til að Hamiltonvirkinn sé jafnstæður? Sýnið að ef
þetta skilyrði er uppfyllt, og |ψ〉 er eiginástand H með eigingildi E þá sé Π |ψ〉
einnig eiginástand H með sama eigingildi.

(d) Notið niðurstöðuna úr liðnum hér á undan, ásamt þeirri staðreynd að orkuróf spuna-
lausrar agnar í einni vídd er ávallt án margfeldni, til að draga ályktun um hegðun
eiginfalla jafnstæðs Hamiltonvirkja við rúmspeglun.

Lausn: Við byrjum á því að athuga að Π2f(x) = Πf(−x) = f(x) svo Π er sjálfoka. Athugum
síðan að

Πf(x) = λf(x) =⇒ f(x) = Π2f(x) = Π(λf(x)) = λΠf(x) = λ2f(x)

en þar með eru eigingildi f(x) nauðsynlega λ = ±1. Skoðum síðan

[Π, A] = ΠA−AΠ = ΠAΠ2 −AΠ = AΠ−AΠ = 0.

Athugum síðan að fyrir Hamilton-virkjann

H = − 󰄁2

2m

d2

dx2
+ V (x)

þá fáum við að

ΠHΠψ(x) = ΠHψ(−x) = − 󰄁2

2m

d2ψ

dx2
+ V (−x)ψ(x)

en af því leiðir því að til þess að Hamilton-virkinn sé jafnstæður þá þarf V (−x) = V (x) að vera
jafnstætt fall. En af þessu leiðir því að [Π, H] = 0 svo eiginástönd Hamiltonvirkjans eru einnig
eiginástönd Π. Höfum síðan að

H(Πψ) = ΠHψ = ΠEψ = EΠψ.

svo Πψ er eiginástand H með sama eigingildi. Loks athugum við að þar sem að orkurófið er án
margfeldni og við höfum að ψ(x) og Πψ(x) hafa sömu eigingildi en þar með er ψ(x) = ψ(−x)
svo bylgjuföllin eru einnig jafnstæð.

1



Dæmi 2.

Ögn með massa m er í einvíðum óendanlega djúpum mættisbrunni,

V (x) =

󰀫
0 ef 0 < x < a,
∞ annars.

Ástandi agnarinnar klukkan t = 0 er lýst með bylgjufallinu

ψ(x, 0) =

󰀫
A sin

󰀃
2πx
a

󰀄
ef 0 < x < a

2

0 annars.

(a) Ákvarðið væntigildi mælistærðanna X og P klukkan t = 0.

(b) Nú er orka agnarinnar mæld. Hvert er væntigildi X eftir mælinguna?

(c) Hvaða líkur eru á að mælingin á orku agnarinnar gefi lægstu mögulegu orku í mætt-
inu V (x)?

Lausn: (a) Við byrjum á því að ákvarða stuðulinn A en hann má ákvarða samkvæmt:

|A|2
󰁝 a

2

0
sin2(2πxa )dx =

|A|2a
4

!
= 1 =⇒ A =

2√
a
.

Væntigildin á X og P eru síðan gefin með

〈X〉t=0 = |A|2
󰁝 a

2

0
x sin2(2πxa )dx =

a2A2

16
=

1

4
a.

〈P 〉t=0 = −i󰄁|A|2
󰁝 a

2

0
sin

󰀃
2πx
a

󰀄 d

dx

󰀃
sin

󰀃
2πx
a

󰀄󰀄
dx = −2πi󰄁|A|2

a

󰁝 a
2

0
sin

󰀕
2πx

a

󰀖
cos

󰀕
2πx

a

󰀖
dx = 0.

(b) Eftir mælingu á orkunni þá fellur ástandið niður í eitt af eiginástöndum Hamilton-virkjans
en þau eru gefin með

ψn(x) =

󰁵
2

a
sin

󰀓nπx
a

󰀔

en öll þau ástönd hafa væntigildi a
2 svo það er væntigildi X eftir mælinguna á orku agnarinnar.

(c) Loks þurfum við að liða upphafsástandið í línulega samantekt af eiginástöndum Hamilton-
virkjans. Skrifum því

ψ(x, 0) =
󰁛

n∈Z+

anψn(x)

Við rifjum síðan upp að leiðin til þess að ákvarða stuðlana an er með því að nýta sér að eiginá-
stöndin eru hornrétt hver á annað þannig að með því að margfalda báðar hliðar með ψm(x) og
tegra fæst:

am =

󰁝 a

0
ψm(x)

󰁛

n∈Z+

anψn(x) =

󰁝 a
2

0
ψm(x)ψ(x)dx =

4
√
2 sin

󰀃
mπ
2

󰀄

4π −m2π

ef m ∕= 2 annars er a2 = 1/
√
2. En til þess að svara spurningunni þurfum við einungis a1 svo

við höfum að líkurnar eru:

|a1|2 =
󰀣
4
√
2

3π

󰀤2

=
32

9π2
≈ 0,36.
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Heimadæmi 10: 31. október

Dæmi 1.

Ögn með massa m og orku E > V0 > 0 hreyfist í einni vídd í þröskuldsmætti

V (x) =

󰀫
V0 ef |x| < a

2 ,
0 annars.

(a) Sýnið að gegnstreymisstuðullinn sé gefinn með

T =
4E(E − V0)

4E(E − V0) + V 2
0 sin2(a󰄁

󰁳
2m(E − V0))

(b) Teiknið graf sem sýnir T sem fall af a fyrir fast gildi á E > V0.

Lausn: (a) Teiknum mynd af mættinu:

x

V (x)

V0

E > V0 > 0
I II III

0

−a
2 −a

2

Mynd 1: Þröskuldsmættið.

Með því að leysa Schrödinger-jöfnuna á hverju svæði fyrir sig þá fæst að

ψI(x) = Aeikx +Be−ikx

ψII(x) = Ceiκx +De−iκx

ψIII(x) = Feikx +Ge−ikx

þar sem við skilgreindum

k = 1
󰄁

√
2mE, κ = 1

󰄁

󰁳
2m(E − V0).

Við krefjumst þess síðan að G = 0 (ekkert endurkastast úr óendanlegu) og að innfallið sé A = 1
og notum síðan jaðarskilyrðin í ±a

2 til þess að fá

e−ik a
2 +Beik

a
2 = Ce−iκa

2 +Deiκ
a
2

Ceiκ
a
2 +De−iκa

2 = Feik
a
2

ike−ik a
2 − ikBeik

a
2 = iκC−iκa

2 − iκDeiκ
a
2

iκCeiκ
a
2 − iκDe−iκa

2 = ikFeik
a
2

sem við getum endurskrifað á fylkjaformi sem
󰀳

󰁅󰁅󰁃

−eik
a
2 e−iκa

2 eiκ
a
2 0

0 eiκ
a
2 e−iκa

2 −eik
a
2

ikeik
a
2 iκe−iκa

2 −iκeiκ
a
2 0

0 iκeiκ
a
2 −iκe−iκa

2 −ikeik
a
2

󰀴

󰁆󰁆󰁄

󰀳

󰁅󰁅󰁃

B
C
D
F

󰀴

󰁆󰁆󰁄 =

󰀳

󰁅󰁅󰁃

e−ik a
2

0

ike−ik a
2

0

󰀴

󰁆󰁆󰁄

1



En þetta er einfalt jöfnuhneppi sem hefur lausnir

B =
e−iak(k2 − κ2)

k2 + κ2 + 2ikκ cot(aκ)
,

C = − 2e−
1
2
ia(k−κ)k(k + κ)

e2iaκ(k − κ)2 − (k + κ)2
,

D =
2e−

1
2
ia(k−3κ)k(k − κ)

e2iaκ(k − κ)2 − (k + κ)2
,

F =
2ie−iakkκ

2ikκ cos(aκ) + (k2 + κ2) sin(aκ)
.

En þar með er gegnstreymisstuðullinn gefinn með

T = |F |2 = 4k2κ2

4k2κ2 cos2(aκ) + (k2 + κ2)2 sin2(aκ)

=
4k2κ2

4k2κ2
󰀃
cos2(aκ) + sin2(aκ)

󰀄
+ (k2 − κ2)2 sin2(aκ)

=
4E(E − V0)

4E(E − V0) + V 2
0 sin2(aκ)

þar sem að í lokaskrefinu notuðum við að

k2κ2 =
4m2

󰄁4
E(E − V0), (k2 − κ2)2 =

4m2V 2
0

󰄁4

(b) Til þess að teikna grafið þurfum við fyrst að átta okkur á útgildunum

T ′(a)
!
= 0 =⇒ sin

󰀓
2a
󰄁

󰁳
2m(E − V0)

󰀔
= 0 =⇒ 2a

󰄁
󰁳

2m(E − V0) = nπ =⇒ a =
n󰄁π/2󰁳

2m(E − V0)
.

En í þessu dæmi er a strangt jákvæð stærð (lengd brunnsins) og gildin á T í þessum útgildum
eru gefin með

Tmax = T (0) = 1, Tmin = T ( 󰄁π/2√
2m(E−V0)

) =
4E(E − V0)

(2E − V0)2
> 0.

og fallið sveiflast milli þessara gilda með lotu 󰄁π/
󰁳

2m(E − V0). Grafið verður því:

1

T (a)

a

Mynd 2: Graf af hegðun gegnstreymisstuðulsins sem fall af lengd þröskuldsins, a.
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Dæmi 10.7.4. Hverfiþungi j = 1
2

og j = 1

(a) Nýtið ykkur niðurstöðuna í jöfnum (10.22-10.23) úr Bellac, þ.e.
󰀍
j′m′󰀏󰀏J0

󰀏󰀏jm
󰀎
= mδj′jδm′m ,

󰀍
j′m′󰀏󰀏J±

󰀏󰀏jm
󰀎
=

󰀅
j(j + 1)−mm′󰀆1/2 δj′jδm′,m±1 .

til að ákvarða Sx, Sy og Sz fyrir spuna j = 1
2 .

(b) Notið síðan jöfnu (10.23) til þess að ákvarða Jx, Jy og Jz fyrir spuna j = 1.

(c) Örspönnuðirnir

Tx =

󰀳

󰁃
0 0 0
0 0 −i
0 i 0

󰀴

󰁄, Ty =

󰀳

󰁃
0 0 i
0 0 0
−i 0 0

󰀴

󰁄, Tz =

󰀳

󰁃
0 −i 0
i 0 0
0 0 0

󰀴

󰁄.

tengjast Jx, Jy og Jz fyrir spuna j = 1 með þeim hætti að ef

r̂ = (sin θ cosφ, sin θ sinφ, cos θ)

þá gildir að Ji = U †TiU þar sem

U =
1√
2

󰀳

󰁃
−1 0 1
−i 0 −i

0
√
2 0

󰀴

󰁄.

Lausn: (a) Út frá fylkjastökunum sjáum við að fyrir j′ = j = 1
2 fæst fyrir m = −1

2 ,
1
2 að

󰀍
−1

2

󰀏󰀏S±
󰀏󰀏−1

2

󰀎
= 0,

󰀍
1
2

󰀏󰀏S±
󰀏󰀏−1

2

󰀎
=

󰁵
3

4
+

1

4
δ(12 ,−

1
2 ± 1) ,

󰀍
−1

2

󰀏󰀏S±
󰀏󰀏1
2

󰀎
=

󰁵
3

4
+

1

4
δ(−1

2 ,
1
2 ± 1),

󰀍
1
2

󰀏󰀏S±
󰀏󰀏1
2

󰀎
= 0.

sem gefur okkur að

S+ =

󰀕
0 1
0 0

󰀖
, S− =

󰀕
0 0
1 0

󰀖
, S0 =

󰀕
−1

2 0
0 1

2

󰀖
= Sz

En hér er Sz = S0 og S± = Sx ± iSy sem gefur að

Sx =
1

2
(S+ + S−) =

1

2

󰀕
0 1
1 0

󰀖
, Sy =

1

2i
(S+ − S−) =

1

2

󰀕
0 −i
i 0

󰀖
.

(b) Við reiknum þá aftur fylkjastök nú með j′ = j = 1 og m = −1, 0, 1. Fáum þá

〈−1|J±|−1〉 = 0, 〈−1|J±|0〉 =
√
2δ(−1, 0± 1), 〈−1|J±|1〉 = 0,

〈0|J±|−1〉 =
√
2δ(0,−1± 1), 〈0|J±|0〉 = 0, 〈0|J±|1〉 =

√
2δ(0, 1± 1),

〈1|J±|−1〉 = 0, 〈1|J±|0〉 =
√
2δ(1, 0± 1), 〈1|J±|1〉 = 0.

3



sem gefur því að

J+ =
√
2

󰀳

󰁃
0 0 0
1 0 0
0 1 0

󰀴

󰁄, J− =
√
2

󰀳

󰁃
0 1 0
0 0 1
0 0 0

󰀴

󰁄.

og þar með ályktum við að

Jx =
1

2
(J+ + J−) =

1√
2

󰀳

󰁃
0 1 0
1 0 1
0 1 0

󰀴

󰁄, Jy =
1

2i
(J+ − J−) =

1√
2

󰀳

󰁃
0 −i 0
i 0 −i
0 i 0

󰀴

󰁄.

(c) Með smá Mathematica kóða fæst að

In[1]:= Tx = {{0, 0, 0}, {0, 0, -I}, {0, I, 0}};
Ty = {{0, 0, I}, {0, 0, 0}, {-I, 0, 0}};
Tz = {{0, -I, 0}, {I, 0, 0}, {0, 0, 0}};
Jx = 1/Sqrt[2] {{0, 1, 0}, {1, 0, 1}, {0, 1, 0}};
Jy = 1/Sqrt[2] {{0, -I, 0}, {I, 0, -I}, {0, I, 0}};
Jz = {{1, 0, 0}, {0, 0, 0}, {0, 0, -1}};
U = 1/Sqrt[2] {{-1, 0, 1}, {-I, 0, -I}, {0, Sqrt[2], 0}};

In[2]:= ConjugateTranspose[U] . Tx . U == Jx // Simplify
ConjugateTranspose[U] . Ty . U == Jy // Simplify
ConjugateTranspose[U] . Tz . U == Jz // Simplify

Out[2]= True
True
True
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Heimadæmi 11: 13. nóvember

Dæmi 1

Ástandi vetnisfrumeindar á tilteknum tíma er lýst með bylgjufallinu:

ψ(x, y, z) = N(x+ y + z)e−
√

x2+y2+z2/(2a0)

þar sem a0 er Bohr-geislinn og N > 0 er fasti.

(a) Ákvarðið N með því að staðla bylgjufallið.

(b) Hvaða mæligildi koma til greina fyrir orku frumeindarinnar og 󰂓L2 í þessu ástandi?

(c) Hvaða líkur eru á að mæling á Lz gefi 0?

(d) Gerum ráð fyrir að mæling á Lz gefi 0. Hvaða mæligildi koma til greina fyrir virkjann
L2
x + L2

y eftir það?

Lausn: Við athugum þá að:

1 = 󰀂ψ󰀂2 = N2

󰁝 ∞

0
dr

󰁝 π

0
dθ

󰁝 2π

0
dφ r4 sin θ (sinφ sin θ + cosφ sin θ + cos θ)2 e−r/a0

= 4πN2

󰁝 ∞

0
dr r4e−r/a0 = 96πa50N

2.

sem gefur að

N =
1󰁳

96πa50
.

Athugum síðan að við getum umritað ψ þannig að hæðið á bylgjuföllunum verði skýrara. Fáum
hér að:

f(θ,φ) = (sinφ sin θ + cosφ sin θ + cos θ) =
󰁛

l,m

clmY m
l (θ,φ)

sem gefur okkur að:

clm =

󰁝
dΩ (Y m

l (θ,φ))∗ f(θ,φ)

Hér fæst því að:

ψ(r, θ,φ) = N

󰁵
2π

3

󰀓
(i− 1)Y 1

1 + (i+ 1)Y −1
1 +

√
2Y 0

1

󰀔
re−r/(2a0).

En geislalægi hlutinn er í beinu hlutfalli við Rnl(r) = R21(r) =
1

4a2
re−r/2a0 svo að n = 2. Þannig

að einu gildin sem að koma til greina á orkunni eru með n = 2, l = 1 og m ∈ {−1, 0, 1}. En
orkugildin í vetnisatóminu eru

En = −R∞
n2

= −R∞
4

.

1



Hugsanleg gildi fyrir 󰂓L2 eru síðan

l(l + 1)󰄁2 = 2󰄁2

því l = 1 fyrir öll ástöndin. Þar sem |1 + i| = |1− i| =
√
2 þá eru jafnar líkur á öllum ástöndunum

með m = 0,−1, 1 svo líkurnar á því að Lz gefi núll eru 1/3. Loks ef mæling á Lz gefur núll þá
fellur ástandið niður í

ψ0 = MY 0
1 re

−r/(2a0)

þar sem að M er stöðlunarfasti. Í því tilviki er 󰂓L2ψ0 = (L2
x + L2

y + L2
z)ψ0 = (L2

x + L2
y)ψ0 svo

einu mæligildin sem koma til greina fyrir virkjann L2
x + L2

y eru þau sömu og fyrir 󰂓L2 þ.e. 2󰄁2.

2



Dæmi 2

Þrjár agnir, allar með spunatölu s = 1
2 , víxlverka með Hamiltonvirkjanum

H = −A(󰂓S1 · 󰂓S2 + 󰂓S2 · 󰂓S3 + 󰂓S3 · 󰂓S1)

(a) Finnið öll eigingildi H og margfeldni þeirra.

(b) Hvert er ástand kerfisins klukkan t > 0 ef það er |ψ(0)〉 = |++−〉 klukkan t = 0?

Hér er aðeins öðruvísi lausn til að sýna aðra leið sem var hægt að gera þetta.
Lausn: (a) Við athugum að 󰂓S1 =

󰄁
2(σ1x,σ1y,σ1z) svo það er einfalt mál að reikna þinfeldin

sem koma fyrir. Fáum að:

H = −A󰄁2

4

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

3 0 0 0 0 0 0 0
0 −1 2 0 2 0 0 0
0 2 −1 0 2 0 0 0
0 0 0 −1 0 2 2 0
0 2 2 0 −1 0 0 0
0 0 0 2 0 −1 2 0
0 0 0 2 0 2 −1 0
0 0 0 0 0 0 0 3

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

sem hefur eigingildi ±3A󰄁2
4 með margfeldni 4 hvort um sig.

(b) Þurfum að ákvarða hvaða línulega samantekt af eiginástöndum Hamilton-virkjans þetta
eru. Athugum fyrst að ástandið sem við höfum má skrifa á þinfeldisformi sem:

|++−〉 =
󰀕
1
0

󰀖
⊗

󰀕
1
0

󰀖
⊗

󰀕
0
1

󰀖
=

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
0
1
0
0
0
0
0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

Þurfum að ákvarða hvaða línulega samantekt þetta er af eiginástöndum Hamilton-virkjans en
þau eru

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
0
0
0
0
0
0
1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
0
0
1
0
1
1
0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
1
1
0
1
0
0
0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1
0
0
0
0
0
0
0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
0
0
−1
0
0
1
0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
0
0
−1
0
1
0
0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
−1
0
0
1
0
0
0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

,

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
−1
1
0
0
0
0
0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

.

En þá má ákvarða hvernig línuleg samantekt upphafsástandið er af þessum eiginástöndum og

3



við fáum

|++−〉 =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
0
1
0
0
0
0
0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

=
1

3

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
1
1
0
1
0
0
0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

− 1

3

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
−1
0
0
1
0
0
0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

+
2

3

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
−1
1
0
0
0
0
0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

en þar með verður ástandið sem fall af t gefið með:

|ψ(t)〉 = 1

3
e+3A󰄁it/4 |3〉 − 1

3
e−3A󰄁it/4 |7〉+ 2

3
e−3A󰄁it/4 |8〉

þar sem |i〉 táknar i-ta eiginvigur Hamilton-virkjans.

4



Heimadæmi 12: 14. nóvember

Dæmi 1

(a) Ástandi hreintóna sveifls klukkan t = 0 er lýst með bylgjufallinu

ψ(x, 0) = A(1− 2

󰁵
mω

󰄁
x)2e−mωx2/(2󰄁) ,

þar sem A ∈ C er fasti. Hvert er væntigildi orku sveifilsins í þessu ástandi?

(b) Klukkan t = T > 0 hefur bylgjufallið þróast yfir í

ψ(x, T ) = B(1 + 2

󰁵
mω

󰄁
x)2e−mωx2/(2󰄁) ,

með B ∈ C. Ákvarðið lægsta mögulega gildi T .

Lausn: (a) Byrjum á því að kynna einingarlausar stærðir með því að setja α = mω
󰄁 og

y =
√
αx þá má rita

ψ(x, 0) = A(1− 2y)2e−y2/2 = A(1− 4y + 4y2)e−y2/2.

Við athugum síðan að fyrstu þrjú orkulægstu ástöndin eru gefin með

|0〉 = ψ0 =
󰀓α
π

󰀔1/4
e−y2/2,

|1〉 = ψ1(x) =
󰀓α
π

󰀔1/4√
2 y e−y2/2.

|2〉 = ψ2(x) =
󰀓α
π

󰀔1/4 1√
2
(2y2 − 1)e−y2/2.

svo ástandið sem við höfum fengið hlítur að vera línuleg samantekt af þessum þremur ástöndum
sem gefur eftirfarandi jöfnuhneppi:

a+
√
2by +

c√
2
(2y2 − 1) = 1− 4y + 4y2 =⇒ (a, b, c) = (3,−2

√
2,+2

√
2)

með öðrum orðum er
ψ(x, 0) = A(3 |0〉 − 2

√
2 |1〉+ 2

√
2 |2〉).

stuðullinn A ákvarðast þar með af því að 1 = A2 (9 + 8 + 8) sem gefur að A = 1
5 . En þar sem

H = 󰄁ω(N + 1
2). En þá er væntigildið á orkunni einfaldlega:

〈ψ|H|ψ〉 = 󰄁ω
2

+ 󰄁ω 〈ψ|N |ψ〉 = 󰄁ω
2

+ 󰄁ω

󰀳

󰁃0 ·
󰀕
3

5

󰀖2

+ 1 ·
󰀣
−2

√
2

5

󰀤2

+ 2 ·
󰀣
2
√
2

5

󰀤2
󰀴

󰁄 =
73

50
󰄁ω.

(b) Þurfum fyrst að ákvarða hvaða línulega samantekt þetta er af eiginástöndunum sem um
ræðir. Með sömu aðferð og hér að ofan fæst að

ψ(x, T ) =
eiφ

5

󰀓
3 |0〉+ 2

√
2 |1〉+ 2

√
2 |2〉

󰀔
.

1



Tímaþróunarvirkinn er síðan þannig að:

ψ(x, t) =
3

5
e−it/2 |0〉 − 2

√
2

5
e−3it/2 |1〉+ 2

√
2

5
e5it/2 |2〉

þurfum því að ákvarða t þannig að

e−it/2 = eiφ, e−3it/2 = −eiφ, e−5it/2 = eiφ.

en þetta getur gerst þegar t = T = π
2 ef eiφ = −i.

Dæmi 2

Samfasa ástand hreintóna sveifils er ástand sem uppfyllir

a |z〉 = z |z〉 ,

þar sem a er lækkunarvirkinn og z ∈ C er fasti.

(a) Reiknið væntigildi staðsetningarvirkjans X og skriðþungavirkjans P í stöðluðu sam-
fasa ástandi |z〉.

(b) Reiknið víxlana
󰀅
a, (a†)n

󰀆
og

󰁫
a, eαa

†
󰁬

fyrir heiltölu n og fasta α ∈ C.

(c) Sýnið að ástandið eαa
† |0〉 sé samfasa ástand.

Lausn: (a) Við höfum fyrst að:

a =
1√
2
(X̂ + iP̂ ), a† =

1√
2
(X̂ − iP̂ ).

en þessi vennsl má leysa fyrir X̂ og P̂ og fá

X =

󰀕
󰄁
mω

󰀖1/2

X̂ =

󰀕
󰄁

2mω

󰀖1/2

(a+ a†) , P = (mω󰄁)1/2 P̂ =

󰀕
mω󰄁
2

󰀖1/2 1

i
(a− a†)

En nú er a |z〉 = z |z〉 og þar með 〈z| a† = 〈z| z∗ svo við fáum því að:

〈z|X|z〉 =
󰀕

󰄁
2mω

󰀖1/2

〈z|a+ a†|z〉 =
󰀕

󰄁
2mω

󰀖1/2

(z + z∗) =

󰀕
2󰄁
mω

󰀖
Re(z) ,

〈z|P |z〉 =
󰀕
mω󰄁
2

󰀖1/2 1

i
〈z|a− a†|z〉 = 2

󰀕
mω󰄁
2

󰀖1/2 z − z∗

2i
= (2mω󰄁)1/2 Im(z) .

(b) Sýnum með þrepun að
󰀅
a, (a†)n

󰀆
= n(a†)n−1. Þetta gildir fyrir n = 0, 1, 2. Nú fæst fyrir

n ≥ 3 að
󰁫
a, (a†)n+1

󰁬
= a†

󰁫
a, (a†)n

󰁬
+

󰁫
a, a†

󰁬
(a†)n = n(a†)n + (a†)n = (n+ 1)(a†)n.

þar sem að við notuðum þrepunarforsenduna og
󰀅
a, a†

󰀆
= I. Þá getum við nýtt þessa niðurstöðu

til að reikna víxilinn:
󰁫
a, eαa

†
󰁬
=

󰀥
a,

+∞󰁛

n=0

(αa†)n

n!

󰀦
=

+∞󰁛

n=0

αn

n!
n(a†)n−1 = α

+∞󰁛

n=1

(αa†)n−1

(n− 1)!
= αeαa

†

(c) Þá fæst að

a(eαa
† |0〉) =

󰀓󰁫
a, eαa

†
󰁬
− eαa

†
a
󰀔
|0〉 =

󰁫
a, eαa

†
󰁬
|0〉 = αeαa

† |0〉 .
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Dæmatími 12: 13. nóvember

Dæmi 1

Sýnið að grunnástand agnar án spuna í miðlægu mætti sé ávallt s-ástand.

Lausn: Sýnum þetta með sönnun með mótsögn. Rifjum upp að s-ástand er ástand sem
hefur ℓ = 0 (Fyrir ofan jöfnu 10.79). Byrjum því á því að gera ráð fyrir að grunnástandið,
ψ(r, θ,φ) = ψ(r)Yl

m(θ,φ) hafi ℓ > 0 og orku E og sýnum að þá væri til orkuminna ástand sem
er mótsögn. Nú gefur Hψ = Eψ okkur að

󰀗
− 1

2M

1

r

d2

dr2
(rψ(r)) +

󰀕
l(l + 1)

2Mr2
+ V (r)

󰀖
ψ(r)

󰀘
= Eψ(r).

Látum síðan ψi(r, θ,φ) = ψi(r) vera lausnir á Schrödinger-jöfnunni með ℓ = 0 sem hafa orkugildi
Ei hver um sig. En nú fæst:

E = 〈ψ|H|ψ〉 =
󰁝 ∞

0
ψ∗(r)

󰀗
− 1

2M

1

r

∂2

∂r2
r +

󰀕
ℓ(ℓ+ 1)

2Mr2
+ V (r)

󰀖󰀘
ψ(r)

≥
󰁝 ∞

0
ψ∗(r)

󰀗
− 1

2M

1

r

∂2

∂r2
r + V (r)

󰀘
ψ(r)

þar sem að í öðru jafnaðarmerkinu slepptum við ℓ(ℓ + 1) liðnum því ℓ > 0 var jákvætt. En nú
má skrifa ψ(r) sem línulega samantekt af ástöndunum sem hafa ℓ = 0 þannig að

ψ(r) =
󰁛

i

ciψi(r).

þar sem
󰁓

i |ci|
2 = 1 svo við fáum að:

E ≥
󰁛

i

󰁛

j

󰁝 ∞

0
c∗iψ

∗
i (r)

󰀗
− 1

2M

1

r

∂2

∂r2
r + V (r)

󰀘
cjψj(r) =

󰁛

i

Ei|ci|2.

en þar sem |ci| ≤ 1 fyrir sérhvert i þá er til a.m.k. eitt i þannig að E > Ei sem er mótsögn.

Dæmi 2

Reiknið líkurnar fyrir vetnisfrumeind í grunnástandi að rafeindin sé lengra en einn Bohr-
geisla frá kjarnanum.

Lausn: Eiginástönd vetnisatómsins eru gefin með:

ψnlm(r, θ,φ) = Rnl(r)Y
m
l (θ,φ) .

Grunnástand vetnisatómsins er því gefið með:

ψ100(r, θ,φ) = R10(r)Y
0
0 (θ,φ) =

1√
πa3

e−r/a .

Líkurnar á því að finna ögnina fyrir utan kúlu með geisla r = a þar sem a er Bohr-geislinn eru

p =

󰁝 ∞

a
dr

󰁝 2π

0
dφ

󰁝 π

0
dθ r2 sin θ 〈ψ|ψ〉 = 4

a3

󰁝 ∞

a
dr r2e−2r/a =

5

e2
≈ 0, 677.

1



Dæmi 3

Hamiltonvirki einsátta þrívíðs sveifils er

H =
1

2m
󰂓P 2 +

1

2
mω2 󰂓R2

Ákvarðið þrjú lægstu orkueigingildi sveifilsins og margfeldni þeirra. Reynið að leiða út
formúlu fyrir margfeldni n-ta örvaða orkueigingildisins.

Lausn: Orkugildi einvíða sveifilsins eru En = 󰄁ω(n+ 1
2) svo orkugildi þrívíða sveifilsins eru

E(nx, ny, nz) = 󰄁ω
󰀕
nx + ny + nz +

3

2

󰀖
.

Þrjú lægstu orkugildin verða því:

E(0, 0, 0) =
3

2
󰄁ω, E(1, 0, 0) =

5

2
󰄁ω, E(1, 1, 0) =

7

2
󰄁ω

Seinni tvö hafa margfeldni því t.d. er E(1, 0, 0) = E(0, 1, 0). Leiðum síðan út almenna formúlu
fyrir margfeldni ástandanna.

Hvað eru margar leiðir til að fá n = nx + ny + nz?
Nú má velja nx ∈ [[0, n]] sem eru (n+ 1) valkostir. Eftir það má velja ny ∈ [[0, n− nx]] sem

eru (n− nx + 1) valkostir. Loks verðum við að velja nz = n− nx − nz. Heildarmargfeldnin, d,
verður því

d =

n󰁛

nx=0

(n− nx + 1) = (n+ 1)2 −
n󰁛

nx=0

nx = (n+ 1)2 − n(n+ 1)

2
=

1

2
(n+ 1)(n+ 2).

Dæmi 11.5.1. Fylkjastök virkjanna Q og P

(a) Reiknið fylkjastökin 〈n|Q|m〉 og 〈n|P |m〉 fyrir Q og P miðað við grunninn |n〉.

(b) Reiknið 󰀂ϕn󰀂2 fyrir |ϕn〉 = (a+ a†)2 |n〉.

(c) Reiknið væntigildið af Q4 í ástandinu |n〉.

Lausn: Við athugum að

〈n|Q|m〉 =
󰀃 󰄁
mω

󰀄1/2 〈n|Q̂|m〉

Nú er |n〉 = 1√
n!

󰀃
a†
󰀄n |0〉 svo 〈n| = 1√

n!
〈0| an og við fáum því að

〈n|Q|m〉 =
󰀃 󰄁
mω

󰀄1/2 1√
n!m!

〈0|anQ̂(a†)m|0〉

Við athugum síðan að við höfum samkvæmt skilgreiningunum að
󰁫
Q̂, P̂

󰁬
= iI, a =

1√
2
(Q̂+ iP̂ ), a† =

1√
2
(Q̂− iP̂ ).

2



svo við athugum að:

󰁫
a, Q̂

󰁬
=

󰀗
1√
2
(Q̂+ iP̂ ), Q̂

󰀘
=

i√
2

󰁫
P̂ , Q̂

󰁬
=

1√
2
I.

En þar með fæst með þrepun að:
󰁫
an, Q̂

󰁬
=

n√
2
an−1.

En þetta þýðir því að:

〈0|anQ̂(a†)m|m〉 = 〈0|Q̂an(a†)m +
n√
2
an−1(a†)m|0〉

Þetta var nú ekki sniðugt Matthias. Við hefðum bara átt að athuga að

Q̂ =
1√
2
(a+ a†), P̂ = − i√

2
(a− a†)

svo

〈n|Q|m〉 =
󰁴

󰄁
mω 〈n| 1√

2
(a+ a†)|m〉 =

󰁴
󰄁

2mω

󰀓
〈n|a|m〉+ 〈n|a†|m〉

󰀔
=

󰁴
󰄁

mω

󰀃√
m δn,m−1 +

√
m+ 1δn,m−1

󰀄
.

Eins fæst fyrir P .
Látum

|ϕn〉 = (a+ a†)2 |n〉
= (aa+ a†a+ a†a† + aa†) |n〉
= a

√
n |n− 1〉+ a†

√
n |n− 1〉+ a†

√
n+ 1 |n+ 1〉+ a

√
n+ 1 |n+ 1〉

=
󰁳

n(n− 1) |n− 2〉+ n |n〉+
󰁳

(n+ 1)(n+ 2) |n+ 2〉+ (n+ 1) |n〉
= (2n+ 1) |n〉+

󰁳
n(n− 1) |n− 2〉+

󰁳
(n+ 1)(n+ 2) |n+ 2〉

þar sem að við notuðum hækkunar- og lækkunarreglurnar

a† |n〉 =
√
n+ 1 |n+ 1〉 , a |n〉 =

√
n |n− 1〉 .

En þar með er

󰀂ϕn󰀂2 = 〈ϕn|ϕn〉 = (2n+ 1)2 + n(n− 1) + (n+ 1)(n+ 2) = 3(2n2 + 2n+ 1).

Nú kemur tengingin:

Q4 =

󰀕
󰄁

2mω

󰀖2

(a+ a†)4

en þar með er

〈n|Q4|n〉 =
󰀕

󰄁
2mω

󰀖2

󰀂ϕn󰀂2 = 3

󰀕
󰄁

2mω

󰀖2

(2n2 + 2n+ 1).
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Dæmatími 1: 21. ágúst

Dæmi 1.6.1. Fermi mat og víddargreining

(a) Metið orkuna sem að ljóseind, nifteind og rafeind hafa í eV ef þær hafa (de Broglie)
bylgjulengd λ = 1Å.

(b) Hljóðeindir (e. phonons) svipa til ljóseinda (e. photons) nema að bylgjan sem um ræðir
er hljóðbylgja en ekki ljósbylgja. Þegar að bylgjulengd hljóðs er meiri heldur en bilið milli
grinda í kristalbyggingu þá geta myndast hljóðeindir. Metið orku hljóðeindar Eh = 󰄁ω
fyrir hljóðbylgju í stáli cs = 5 · 103m/s ef bylgjutala hljóðeindarinnar er k = 1 1

nm .

(c) Stærsta sameindin sem að við höfum mælt agnar/bylgju tvíeðli fyrir er C60 sameindin.
Meðalhraði sameindanna er 220m/s þegar að þær fara í gegnum raufarnar. Hver er de
Broglie bylgjulengd þeirra og hvernig passar það við stærð sameindanna?

(d) Skoðum sameind sem að samanstendur af tveimur atómum. Hugsum okkur að þetta sé
eins og stöng með lóð M1 og M2 á sitthvorum enda og heildarlengd r0 = 2a0 = 0,53Å
(Bohr-geislinn) milli atómana. Látum atómið hafa hverfiþunga 󰄁. Hversu hratt snýst þá
stöngin um massamiðju sína? Hver er heildarorka snúningsins Erot?

(e) Sameindin í (d)-lið getur einnig víbrað/titrað meðfram ás stangarinnar umhverfis jafnvæg-
isstöðuna r = r0 = 2a0 og hegðar sér eins og gormur með gormstuðul k = e2

(2a0)3
. Hver er

sveiflutíðni sameindarinnar ωv og tilheyrandi orka Ev = 󰄁ωv?

(f) Planck-orkuna EP og Planck-lengdina ℓP má smíða með víddargreiningu eingunis sem fall
af G, 󰄁 og c. Ákvarðið formkornið á þessum stærðum.

Dæmi 2.4.1. Innfeldi og staðall

Nota má innfeldið til þess að skilgreina staðal samkvæmt 󰀂ϕ󰀂2 = (|ϕ〉 , |ϕ〉) = 〈ϕ|ϕ〉.

(a) Sýnið að staðallinn uppfylli þríhyrningsójöfnuna 󰀂χ+ ϕ󰀂 ≤ 󰀂χ󰀂+ 󰀂ϕ󰀂.

(b) Sýnið að |󰀂χ󰀂 − 󰀂ϕ󰀂| ≤ 󰀂χ+ ϕ󰀂.

(c) Sýnið að 󰀂χ+ ϕ󰀂2 + 󰀂χ− ϕ󰀂2 = 2(󰀂χ󰀂2 + 󰀂ϕ󰀂2).

(d) Öfugt: Sýnið að ef staðallinn uppfyllir skilyrðið í (c)-lið þá skilgreini hann innfeldi

(φ,χ) = (χ,φ) =
1

4

󰀓
󰀂χ+ φ󰀂2 − 󰀂χ− φ󰀂2

󰀔
.

Dæmi 2.4.2. Víxlar og spor

(a) Sýnið að [A,BC] = B[A,C] + [A,B]C.

(b) Sýnið að Tr(AB) = Tr(BA).

(c) Sýnið að sporið sé rásað, þ.e. Tr(ABC) = Tr(BCA) = Tr(CAB).

(d) Sýnið að sporið sé óháð því hvaða grunn við veljum. Með öðrum orðum sýnið að undir
hnitaskiptum A → A′ = SAS−1 þá sé Tr(A′) = Tr(A).
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Dæmi 2.4.3. Ákveðan og sporið

(a) Látum A(t) vera tímaháð fylki en látum B vera tímaóháð. Ákvarðið lausnir deildajafnanna

dA(t)

dt
= A(t)B ,

dA(t)

dt
= BA(t) .

(b) Látum A vera hornalínugeranlegt. Sýnið að

det
󰀃
eAt1

󰀄
det

󰀃
eAt2

󰀄
= det

󰀓
eA(t1+t2)

󰀔
.

(c) Sýnið loks að det
󰀃
eA

󰀄
= eTr(A) og að det(A) = eTr(ln(A)).

Dæmi 2.4.4. Ofanvarpsvirki í R3

Látum 󰂓u1 og 󰂓u2 vera vigra í R3 sem eru línulega óháðir (en ekki nauðsynlega hornréttir). Látum
P vera ofanvarpsvirkja á planið M sem vigrarnir 󰂓u1 og 󰂓u2 spanna, þ.a. M =

󰀋
s󰂓u1 + t󰂓u2 | (s, t) ∈ R2

󰀌
.

Látum nú 󰂓v ∈ R3\M . Sýnið að rita megi

P󰂓v =

2󰁛

i,j=1

C−1
ij (󰂓v · 󰂓ui)󰂓uj , þar sem Cij =

󰀕
󰂓u1 · 󰂓u1 󰂓u1 · 󰂓u2
󰂓u2 · 󰂓u1 󰂓u2 · 󰂓u2

󰀖
.

2.4.11. Virkjaleikfimi

(a) Látum A og B vera tímaóháð fylki og skilgreinum

f(t) = etABe−tA .

Sýnið að
df

dt
= [A, f(t)] ,

d2f

dt2
= [A, [A, f(t)]] .

(b) Sýnið að
etABe−tA = B + t[A,B] +

t2

2
[A, [A,B]] + . . .

(c) Látum nú sér í lagi virkjana A,B,C uppfylla

[A,B] = iC , [B,C] = iA .

Sýnið að þá gildi að
eiBtAe−iBt = A cos(t) + C sin(t) .

(d) Gerum nú ráð fyrir að bæðia A og B víxlist við víxilinn sinn, þ.e.a.s. að [A, [A,B]] = 0 og
að [B, [A,B]] = 0. Sýnið að þá gildi að

(i) eA+B = eAeBe−
1
2
[A,B] , (ii) eAeB = eBeAe[A,B] .
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Dæmatími 1: 21. ágúst (Lausnir)

Dæmi 1.6.1. Fermi mat og víddargreining

(a) Metið orkuna sem að ljóseind, nifteind og rafeind hafa í eV ef þær hafa bylgjulengd λ = 1Å.

Lausn: Ljóseindin hefur orku Eγ = hc
λ = 12,4 keV. Til þess að ákvarða orkuna á

rafeindinni og nifteindinni þurfum við að nota de Broglie bylgjulengdina λB = h
p þá

fæst En = p2

2mn
= h2

2λ2mn
= 82meV og eins Ee =

h2

2λ2me
= 151 eV.

(b) Hljóðeindir (e. phonons) svipa til ljóseinda (e. photons) nema að bylgjan sem um ræðir
er hljóðbylgja en ekki ljósbylgja. Þegar að bylgjulengd hljóðs er meiri heldur en bilið milli
grinda í kristalbyggingu þá geta myndast hljóðeindir. Metið orku hljóðeindar 󰄁ω fyrir
hljóðbylgju í stáli cs = 5 · 103m/s ef bylgjutala hljóðeindarinnar er k = 1 1

nm .

Lausn: Þá er Eh = 󰄁ω = 󰄁csk = 3,3meV.

(c) Stærsta sameindin sem að við höfum mælt agnar/bylgju tvíeðli fyrir er C60 sameindin.
Meðalhraði sameindanna er 220m/s þegar að þær fara í gegnum raufarnar. Hver er de
Broglie bylgjulengd þeirra og hvernig passar það við stærð sameindanna?

Lausn: de Broglie bylgjulengd C60 sameindar er λ = h
p = h

mv = h
60·12muv

= 2,5 pm.

(d) Skoðum sameind sem að samanstendur af tveimur atómum. Hugsum okkur að þetta sé
eins og stöng með lóð M1 og M2 á sitthvorum enda og heildarlengd r0 = 2a0 = 0,53Å
(Bohr-geislinn) milli atómana. Látum atómið hafa hverfiþunga 󰄁. Hversu hratt snýst þá
stöngin um massamiðju sína? Hver er heildarorka snúningsins Erot?

Lausn: Massamiðjan er í fjarlægð r1 = M2r0
M1+M2

frá massanum M1 en r2 = M1r0
M1+M2

frá hinum endanum. Hverfitregða stangarinnar er þá gefin með

I = M1r
2
1 +M2r

2
2 =

M1M2

M1 +M2
r20 = µr20.

þar sem að µ = M1M2
M1+M2

er smækkaði massi kerfisins. Þá er 󰄁 = L = Iω sem gefur
því að ω = 󰄁

I . Snúningsorkan er síðan Erot =
1
2Iω

2 = 󰄁2
2µr20

.

(e) Sameindin í (d)-lið getur einnig víbrað/titrað meðfram ás stangarinnar umhverfis jafnvæg-
isstöðuna r = r0 = 2a0 og hegðar sér eins og gormur með gormstuðul k = e2

(2a0)3
. Hver er

sveiflutíðni sameindarinnar ωv og tilheyrandi orka Ev = 󰄁ωv?

Lausn: Þá er sveiflutíðnin ω =
󰁴

k
µ = e

2a0

󰁴
1

2a0µ
.
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(f) Planck-orkuna EP og Planck-lengdina ℓP má smíða með víddargreiningu eingunis sem fall
af G, 󰄁 og c. Ákvarðið formkornið á þessum stærðum.

Lausn: Fáum
EP = Gα󰄁βcγ

Þar sem að einingar stærðanna eru [Ep] =
kgm2

s2
, [G] = m3

kg s2
, [󰄁] = kgm2

s og [c] = m
s

þá fæst með víddargreiningu
kgm2

s2
= [Ep] = [G]α[󰄁]β [c]γ =

󰀕
m3

kg s2

󰀖α󰀕
kgm2

s

󰀖β 󰀓m
s

󰀔γ

sem gefur því jöfnuhneppið
󰀻
󰁁󰀿

󰁁󰀽

kg: 1 = −α+ β

m: 2 = 3α+ 2β + γ

s: −2 = −2α− β − γ

Leggjum saman síðustu tvær jöfnurnar fæst α+ β = 0 og með fyrstu jöfnunni gefur
þetta því að β = 1

2 og þá α = −1
2 en þá er γ = 2− 3α− 2β = 5

2 . Því er

EP =

󰁵
󰄁c5
G

= 1,95 · 109 J =⇒ ℓP =
󰄁c
EP

=

󰁵
󰄁
G

c3
= 1,6 · 10−35m.

Dæmi 2.4.1. Innfeldi og staðall

Nota má innfeldið til þess að skilgreina staðal samkvæmt 󰀂ϕ󰀂2 = (|ϕ〉 , |ϕ〉) = 〈ϕ|ϕ〉.

(a) Sýnið að staðallinn uppfylli þríhyrningsójöfnuna 󰀂χ+ ϕ󰀂 ≤ 󰀂χ󰀂+ 󰀂ϕ󰀂.

(b) Sýnið að |󰀂χ󰀂 − 󰀂ϕ󰀂| ≤ 󰀂χ+ ϕ󰀂.

(c) Sýnið að 󰀂χ+ ϕ󰀂2 + 󰀂χ− ϕ󰀂2 = 2(󰀂χ󰀂2 + 󰀂ϕ󰀂2).

(d) Öfugt: Sýnið að ef staðallinn uppfyllir skilyrðið í (c)-lið þá skilgreini hann innfeldi

(φ,χ) = (χ,φ) =
1

4

󰀓
󰀂χ+ φ󰀂2 − 󰀂χ− φ󰀂2

󰀔
.

Lausn:

Dæmi 2.4.2. Víxlar og spor

(a) Sýnið að (i) [A,BC] = B[A,C] + [A,B]C (ii) [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

(b) Spor virkjans A er skilgreint sem summa stakanna á hornalínunni

Tr(A) =
󰁛

n

Ann .

Sýnið að Tr(AB) = Tr(BA).

(c) Sýnið að sporið sé rásað, þ.e. Tr(ABC) = Tr(BCA) = Tr(CAB).

(d) Sýnið að sporið sé óháð því hvaða grunn við veljum. Með öðrum orðum sýnið að undir
hnitaskiptum A → A′ = SAS−1 þá sé Tr(A′) = Tr(A).
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Lausn: (a) Við athugum að

[A,BC] = ABC −BCA

og eins athugum við að

B[A,C] + [A,B]C = BAC −BCA+ABC −BAC = ABC −BCA = [A,BC].

(b) Látum C = AB og D = BA þá gildir að fylkjastökin eru gefin með

Cnm =
󰁛

k

AnkBkm, Dnm =
󰁛

k

BnkAkm .

þannig að við fáum

Tr(AB) = Tr(C) =
󰁛

n

󰁛

k

AnkBkn =
󰁛

k

󰁛

n

BknAnk = Tr(D) = Tr(BA).

(c) Með því að láta X = A og Y = BC fæst með (b)-lið að

Tr(ABC) = Tr(XY ) = Tr(Y X) = Tr(BCA).

eins fæst Tr(ABC) = Tr(CAB) ef við látum X = AB og Y = C.

(d) Þar sem að sporið er rásað fæst að Tr(A′) = Tr
󰀃
SAS−1

󰀄
= Tr

󰀃
S−1SA

󰀄
= Tr(A).

Dæmi 2.4.3. Ákveðan og sporið

(a) Látum A(t) vera tímaháð fylki en látum B vera tímaóháð. Ákvarðið lausnir deildajafnanna

dA(t)

dt
= A(t)B ,

dA(t)

dt
= BA(t) .

(b) Látum A vera hornalínugeranlegt. Sýnið að

det
󰀃
eAt1

󰀄
det

󰀃
eAt2

󰀄
= det

󰀓
eA(t1+t2)

󰀔
.

(c) Sýnið loks að det
󰀃
eA

󰀄
= eTr(A) og að det(A) = eTr(ln(A)).

Lausn: (a) Höfum að fyrir A(t) = A(0)eBt fæst að

d

dt
(A(t)) = A(0)BeBt = A(t)B

þar sem að við notuðum að [B,B] = 0. Hinsvegar ef A(T ) = eBtA(0) þá fæst

d

dt
A(t) = BeBtA(0) = BA(t).

(b) Látum λn vera eigingildi A þá gildir að

det(A) =
󰁜

n

λn

þannig að

det
󰀃
eA

󰀄
=

󰁜

n

eλn = e

󰁓
n

λn

= eTr(A).

Þá fæst að

det
󰀃
eAt1

󰀄
det

󰀃
eAt2

󰀄
= e

(
󰁓
n

λn)t1
e
(
󰁓
n

λn)t2
= ee

(
󰁓
n

λn)(t1+t2)

= det
󰀓
eA(t1+t2)

󰀔
.
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Dæmi 2.4.4. Ofanvarpsvirki í R3

Látum 󰂓u1 og 󰂓u2 vera vigra í R3 sem eru línulega óháðir (en ekki nauðsynlega hornréttir). Látum
P vera ofanvarpsvirkja á planið M sem vigrarnir 󰂓u1 og 󰂓u2 spanna, þ.a. M =

󰀋
s󰂓u1 + t󰂓u2 | (s, t) ∈ R2

󰀌
.

Látum nú 󰂓v ∈ R3\M . Sýnið að rita megi

P󰂓v =

2󰁛

i,j=1

C−1
ij (󰂓v · 󰂓ui)󰂓uj , þar sem Cij =

󰀕
󰂓u1 · 󰂓u1 󰂓u1 · 󰂓u2
󰂓u2 · 󰂓u1 󰂓u2 · 󰂓u2

󰀖
.

Lausn: Þar sem að P er ofanvarpsvirki þá er P󰂓v ∈ M og því er 󰂓v − P󰂓v vigur sem er
hornréttur á M og þar með á bæði 󰂓u1 og 󰂓u2. Við höfum því að

(󰂓v − P󰂓v) · 󰂓u1 = 0 , og (󰂓v − P󰂓v) · 󰂓u2 = 0 .

Mynd 1: Ofanvarp vigursins 󰂓v niður í tvívíða hlutrúmið M sem 󰂓u1 og 󰂓u2 spanna.

Sér í lagi þar sem að P󰂓v ∈ M þá má finna stuðla a, b þannig að rita megi

P󰂓v = a 󰂓u1 + b 󰂓u2 ,

markmiðið okkar er að ákvarða a og b. En hornrétta skilyrðið hér að ofan gefur okkur að

󰂓v · 󰂓u1 − (a 󰂓u1 + b󰂓u2) · 󰂓u1 = 󰂓0 , 󰂓v · 󰂓u2 − (a 󰂓u1 + b󰂓u2) · 󰂓u2 = 󰂓0 .

en þetta getum við umritað sem jöfnuhneppi fyrir a og b
󰀫
󰂓v · 󰂓u1 − a 󰂓u1 · 󰂓u1 − b 󰂓u1 · 󰂓u2 = 0 ,

󰂓v · 󰂓u2 − a 󰂓u1 · 󰂓u2 − b 󰂓u2 · 󰂓u2 = 0 .

eða á fylkjaformi
󰀕
󰂓u1 · 󰂓u1 󰂓u1 · 󰂓u2
󰂓u1 · 󰂓u2 󰂓u2 · 󰂓u2

󰀖󰀕
a
b

󰀖
=

󰀕
󰂓v · 󰂓u1
󰂓v · 󰂓u2

󰀖
.

En fylkið vinstra meginn er einmitt fylkið Cij svo við sjáum að
󰀕
a
b

󰀖
= C−1

ij

󰀕
󰂓v · 󰂓u1
󰂓v · 󰂓u2

󰀖
.

En þetta gefur því að

P󰂓v = a󰂓u1 + b󰂓u2 =
󰀅
C−1
11 (󰂓v · 󰂓u1) + C−1

21 (󰂓v · 󰂓u2)
󰀆
󰂓u1 +

󰀅
C−1
21 (󰂓v · 󰂓u1) + C−1

22 (󰂓v · 󰂓u2)
󰀆
󰂓u2 .

sem var það sem sýna átti.
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2.4.11. Virkjaleikfimi

(a) Látum A og B vera tímaóháð fylki og skilgreinum

f(t) = etABe−tA .

Sýnið að
df

dt
= [A, f(t)] ,

d2f

dt2
= [A, [A, f(t)]] .

(b) Sýnið að
etABe−tA = B + t[A,B] +

t2

2
[A, [A,B]] + . . .

(c) Látum nú sér í lagi virkjana A,B,C uppfylla

[A,B] = iC , [B,C] = iA .

Sýnið að þá gildi að
eiBtAe−iBt = A cos(t) + C sin(t) .

Lausn: (a) Fáum að

df

dt
=

d

dt

󰀃
etABe−tA

󰀄
= AetABe−tA + etAB(−A)e−tA = Af(t)− f(t)A = [A, f(t)] .

En það gefur að

d2f

dt2
=

d

dt

󰀕
df

dt

󰀖
=

d

dt
([A, f(t)]) =

d

dt
(Af(t)− f(t)A) = A

df

dt
− df

dt
A =

󰀗
A,

df

dt

󰀘
= [A, [A, f(t)]] .

(b) Fáum þá að

eiBtAe−iBt = A+ t[iB,A] +
t2

2
[iB, [iB,A]] + . . .

= A+ it(−iC) +
t2

2
[iB, i(−iC)] + . . .

= A+ Ct− t2

2
A+ . . .

= A cos(t) + C sin(t).

(c) Látum g(t) = eAteBt og fáum þá að

g′(t) = AeAteBt + eAtBeBt = eAt(A+B)eBt.

Margföldum svo með 1 = e−AteAt (því [A,A] = 0) og fáum þá að

eAt(A+B)e−AteAteBt = (A+B + t[A,B])g(t)

en þetta gefur því að g′(t) = (A+B + t[A,B])g(t) en sú diffurjafna hefur lausn

g(t) = e(A+B)t+ 1
2
[A,B]t2g(0)

en við vitum að g(t) = eAteBt svo g(0) = 1 en þar með höfum við sýnt að

eAteBt = e(A+B)t+ 1
2
[A,B]t2

Loks víxlast A og B við [A,B] og því megum við margfalda í gegn með e−
1
2
[A,B]t2 þannig að

niðurstaðan fáist.
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Dæmi fyrir skammtafræði 1

Dæmi 1: Pauli-fylkin eru skilgreind þannig að

σ1 = σx =

󰀕
0 1
1 0

󰀖
, σ2 = σy =

󰀕
0 −i
i 0

󰀖
, σ3 = σz =

󰀕
1 0
0 −1

󰀖
.

Það er gott að hafa í huga að þau eru notuð í líkani fyrir spuna upp/niður og hafa eigingildi ±1.

(a) Sýnið að Pauli fylkin séu sjálfhverf (þ.e.a.s. að þau séu sín eigin andhverfa):

σ2
x = σ2

y = σ2
z = I ,

þar sem I táknar einingarfylkið. Sýnið auk þess að við höfum −iσxσyσz = I.

(b) Reiknið víxlana [σx,σy], [σx,σz] og [σy,σz].

(c) Reiknið andvíxilinn {σx,σy} = σxσy + σyσx.

(d) Sýnið að eitσx = I cos(t) + iσx sin(t).

Dæmi 2: Tengsl við Lie-grúpuna SU(2) og Lie-algebruna su(2)

Við segjum að ferningsfylki A sé einoka ef að andhverfa þess A−1 = A† þar sem A† er aðokafylkið.

Mengi allra einoka (e. unitary) ferningsfylkja er táknað með U(n) :=
󰀋
A ∈ Cn×n |A−1 = A†󰀌.

Sér í lagi mun hlutmengið SU(n) :=
󰀋
A ∈ Cn×n |A−1 = A†, det(A) = 1

󰀌
koma víða við sögu.

(a) Látum nú A =
󰀃
a b
c d

󰀄
vera 2 × 2 tvinntalnafylki. Sýnið að til þess að A ∈ SU(2) þá þarf

c = −b og d = a. Með öðrum orðum, sýnið að rita megi sérhvert stak í SU(2) á forminu

A =

󰀕
a b

−b a

󰀖
, þar sem að |a|2 + |b|2 = 1.

(b) Sýnið að rita megi

A = Re(a)I + Im(b)iσx +Re(b)iσy + Im(a)iσz .

Með öðrum orðum að {I, iσx, iσy, iσz} myndi grunn (með rauntalnastuðlum) fyrir SU(2).

(c) Skoðum nú örsmæðarhnikun frá einingarfylkinu A = I+󰂃B. Sýnið að til þess að A ∈ SU(2)
þá þurfi Tr(B) = 0 og almennasta formið á B er gefið með

B =

󰀕
z w

−w z

󰀖
, z + z = 2Re(z) = 0.

Ályktið að {iσx, iσy, iσz} myndi grunn fyrir snertlarúmið su(2) við SU(2) í grennd við
einingarfylkið.

(d) Almennt gildir að
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Gömul prófdæmi í Skammtafræði 1

1 Liða í kúluföll

(Dæmi 1 frá 2018) Á tilteknum tíma hefur ögn á hreyfingu í þrívíðu rúmi bylgjufall

ψ(󰂓r) = c(rz + 3z2 − r2)e−br5

þar sem b, c eru jákvæðir fastar.

(i) Hvaða gildi geta mælst á heildarhverfiþunganum 󰂓L2 og hverfiþunganum Lz í stefnu
z-áss og með hvaða líkum?

(ii) Nú beitum við hækkunarvirkjanum L+ á ψ og fáum ψ1 = L+ψ. Finnið ψ1 og svarið
sömu spurningum og í (i).

Lausn: (i) Við byrjum á því að umrita gefna bylgjufallið sem línulega samantekt af kúlu-
föllunum Yℓ

m(θ,φ). Takið eftir því að við erum ekkert spurð um geislalæga hluta bylgjufallsins
svo að við þurfum ekki að ákvarða Rnℓ. Við byrjum á því að skrifa ψ(󰂓r) í kúluhnitum þannig að

x = r sin θ cosφ,

y = r sin θ sinφ,

z = r cos θ.

með rúmmálsfrymi dV = r2 sin θdrdθdφ. En þar með sjáum við að

ψ(󰂓r) = cr2e−br5(cos θ + 3 cos2 θ − 1).

Búum síðan til litla töflu með kúluföllunum til útskýringar:

Y m
ℓ Fall
Y 0
0

1√
4π

Y −1
1

󰁴
3
8π sin θe−iφ

Y 0
1

󰁴
3
4π cos θ

Y 1
1 −

󰁴
3
8π sin θeiφ

Y −2
2

󰁴
15
32π sin2 θe−2iφ

Y −1
2

󰁴
15
8π sin θ cos θe−iφ

Y 0
2

󰁴
5

16π (3 cos
2 θ − 1)

Y 1
2 −

󰁴
15
8π sin θ cos θeiφ

Y 2
2

󰁴
15
32π sin2 θe2iφ

Með smá störun sjáum við að þetta er línuleg samantekt af Yℓm = Y0
0, Y1

0, Y2
0. Nánar tiltekið

ψ(󰂓r) = cr2e−br5(

󰁵
4π

3
Y1

0 +

󰁵
16π

5
Y2

0).

En þar með sjáum við að hugsanleg gildi sem að við getum mælt hafa ℓ = 1, 2 og m = 0.
Gildin á heildarhverfiþunganum 󰂓L2 eru því ℓ(ℓ + 1)󰄁2 svo annað hvort 2󰄁2 með líkum 5

17 eða

1



6󰄁2 með líkum 12
17 (líkurnar á því að finna hvort um sig eru 4π

3 A2 og 16π
5 A2 þar sem A2 kemur

frá stöðlun bylgjufallsins - en heildarsumman er 1 sem ákvarðar A2 = 15
68π ). Eina hugsanlega

gildið sem kemur til greina á hverfiþunga í stefnu z-áss er síðan 0 því m = 0 og eigingildin eru m󰄁.

(ii) Þegar að við verkum með L+ þá verkar hann einungis á kúluföllinn þannig að hann
hækkar gildið á m með eftirfarandi hætti

L±Yℓ
m =

󰁳
ℓ(ℓ+ 1)−m(m+ 1)Yℓ

m±1

En þar með höfum við að

ψ1(󰂓r) = L+ψ(󰂓r) = cr2e−br5(

󰁵
4π

3
√
Y1

1 +

󰁵
16π

5
√
Y2

1).

Við þurfum síðan ekki á því að halda en svona til framtíðar þá minnumst við á að geislalægi
hlutinn Rnℓ er með samskonar töflu:

Rn,ℓ Function

R1,0 2
󰀓

1
a0

󰀔3/2
e−r/a0

R2,0
1√
2

󰀓
1
a0

󰀔3/2 󰀓
1− r

2a0

󰀔
e−r/(2a0)

R2,1
1√
24

󰀓
1
a0

󰀔3/2
r
a0
e−r/(2a0)

R3,0
2

27
√
3

󰀓
1
a0

󰀔3/2 󰀓
1− 2r

3a0
+ 2r2

27a20

󰀔
e−r/(3a0)

R3,1
8

27
√
6

󰀓
1
a0

󰀔3/2
r
a0

󰀓
1− r

6a0

󰀔
e−r/(3a0)

R3,2
4

81
√
30

󰀓
1
a0

󰀔3/2
r2

a20
e−r/(3a0)

(Dæmi 1 frá 2019) Á tilteknum tíma hefur ögn á hreyfingu í þrívíðu rúmi bylgjufall

ψ(󰂓r) = cx2e−br3

þar sem b, c eru jákvæðir fastar.

(i) Hvaða gildi geta mælst á heildarhverfiþunganum 󰂓L2 og hverfiþunganum Lz í stefnu
z-áss og með hvaða líkum?

(ii) Hvað gildi geta mælst á Lx, hverfiþunganum í stefnu x-áss og með hvaða líkum?
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2 Spuna Hamiltonvirki

(Dæmi 2 frá 2018) Tvær agnir, ögn 1 og ögn 2, báðar með spuna 2 eru kyrrstæðar í
rúminu og víxlverka með Hamilton-virkja

H = −A󰂓S1 · 󰂓S2

þar sem A > 0 er fasti og 󰂓Sj = (Sjx,Sjy ,Sjz er spunavirkinn fyrir ögn númer j = 1, 2.

(i) Finnið öll eigingildi H og margfeldni þeirra.

(ii) Virkinn 󰂓S = (Sx, Sy, Sz) = 󰂓S1 + 󰂓S2 lýsir heildarspuna kerfisins. Látum |j,m〉 tákna
sameiginleg eiginket 󰂓S2 = 󰂓S · 󰂓S og Sz með eigingildi j(j + 1)󰄁2 og m󰄁. Ef kerfið er
í ástandinu |4, 2〉 hvaða gildi geta mælst á S1z og með hvaða líkum?

(Dæmi 2 frá 2019) Þrjár agnir, ögn 1, ögn 2 og ögn 3, allar með spuna 1
2 , eru kyrrstæðar

í rúminu og víxlverka með Hamiltonvirkja

H = −A(󰂓S1 · 󰂓S2 + 󰂓S2 · 󰂓S3 + 󰂓S1 · 󰂓S3),

þar sem A > 0 er fasti og 󰂓Sj = (Sjx,Sjy ,Sjz er spunavirkinn fyrir ögn númer j = 1, 2, 3.

(i) Finnið öll eigingildi H og margfeldni þeirra.

(ii) Ef kerfið er í ástandinu |ψ(0)〉 = |++−〉 á tímanum t = 0 finnið ástand spunanna
fyrir t > 0. Hér merkir |++−〉 að spunar agna 1 og 2 eru 1

2󰄁 en spuni agnar 3 er
−1

2󰄁 í stefnu z-áss.

3 Hreintóna sveifill

(Dæmi 3 frá 2018) Þrívíður einsátta hreintóna sveifill er í ástandinu

|ψ〉 = c (|1, 1, 0〉+ |2, 0, 0〉+ |0, 1, 0〉) ,

þar sem c er stöðlunarfasti á tímanum t = 0. Eins og venjulega er

|nx, ny, nz〉 = (nx!ny!nz!)
−1/2 (a†x)

nx(a†y)
ny(a†z)

nz |0, 0, 0〉 .

þar sem |0, 0, 0〉 er grunnástandið.

(i) Finnið ástand sveifilsins á tímanum t > 0.

(ii) Reiknið væntigildi brautarhverfiþungans í stefnu z-áss á tímanum t = 0 og gerið
grein fyrir því hvernig það breytist með tíma.
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(Dæmi 3 frá 2019)

(i) Spunalaus ögn er á hreyfingu í einni vídd í mætti V1 sem á sér bundið ástand.
Táknum orku grunnástandsins með E1. Önnur eins ögn hreyfist í mætti V2 þar sem
V2 ≤ V1 og látum E2 vera grunnástandsorku hennar. Sýnið að E2 ≤ E1.

(ii) Gerum nú ráð fyrir að ögn hreyfist í mætti

V (x) =

󰀫
1
2mω2x2, |x| ≤ a,

∞, |x| > a.

Sýnið að grunnástandsorka hennar E0 uppfyllir ójöfnurnar

E0 ≥
󰄁2π2

8ma2
, E0 ≥

1

2
󰄁ω.

4 Skammtatölvur

(Dæmi 2 frá 2017) Anna og Baldur deila flæktu skammtaástandi þannig að Anna er
með fyrsta skammtabitann en Baldur með seinni skammtabitann.

(i) Ef skammtabitarnir eru í ástandinu

|ψ+〉 =
|00〉+ |11〉√

2

hverjar eru þá líkurnar á því að bæði Anna og Baldur finni skammtabitann sinn í
ástandinu |+〉 = |0〉+|1〉√

2
?

(ii) Sama spurning nema fyrir ástandið

|ψ−〉 =
|00〉 − |11〉√

2
.

(iii) Í fyrirlestri sýndum við hvernig að nota má ástandið |ψ+〉 til þess að fjarflytja
skammtaástandi. Er hægt að nota ástandið |ψ−〉 til þess að gera hið sama? Útskýrið.
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(Dæmi 4 frá 2018) Táknum ástand tveggja skammtabita í reikningsgrunninum með
|i1i2〉 þar sem i1, i2 ∈ {0, 1}. Látum H1 tákna Hadamard gátt fyrir fyrri skammtabitann
og látum CNOT vera stýrða NOT gátt fyrir tvo skammtabita þar sem fyrri skammtabitinn
stýrir hinum síðari, þ.e. verkun CNOT er lýst með:

|00〉 󰀁→ |00〉 , |01〉 󰀁→ |01〉 , |10〉 󰀁→ |11〉 , |11〉 󰀁→ |10〉 .

(i) Sýnið að W = H1 CNOTH1 er skammtagátt fyrir tvo skammtabita og finnið hvað
W gerir við ketin í reikningsgrunninum.

(ii) Ef U er skammtagátt þannig að U |00〉 = (|01〉+ |10〉) /
√
2 og U |11〉 = (|01〉 −

|10〉)/
√
2, hvað getið þið sagt um U |01〉 og U |10〉?

(Dæmi 4 frá 2019)

(i) Táknum ástand tveggja skammtabita í reikningsgrunninum með |i1i2〉 þar sem
i1, i2 ∈ {0, 1}. Látum U vera skammtagátt sem er skilgreind með

|00〉 󰀁→ |01〉 , |01〉 󰀁→ |10〉 , |10〉 󰀁→ |11〉 , |11〉 󰀁→ |00〉 .

Gerum ráð fyrir að ástand skammtabitanna sé |ψ〉. Sýnið að |ψ〉 sé flækt ef og aðeins
ef U |ψ〉 sé flækt

(ii) Gerum ráð fyrir að skammtabitarnir séu í ástandinu

|φ〉 = 1

2
(|00〉+ |01〉+ |10〉+ |11〉).

Nú fjarlægjum við síðari skammtabitann. Finnið þéttleikafylkið sem lýsir ástandi
fyrri skammtabitans. Er ástandið hreint eða blandað?

5 Truflanareikningur

(Dæmi 4 frá 2014) Vetnisatóm í grunnástandi verður fyrir truflun W = λX2.

(i) Reiknið í lægstu nálgun í λ breytinguna á orku grunnástandsins.

(ii) Fyrir hvaða ótrufluð ástönd vetnis |nℓm〉 getur innfeldið 〈nℓm|V |100〉 verið frá-
brugðið núll?

(Dæmi 4 frá 2016) Vetnisatóm er truflað með mætti W = λr2.

(i) Finnið fyrsta stigs leiðréttingu á orku grunnástandsins.

(ii) Finnið efri og neðri mörk á annars stigs leiðréttinguna á orku grunnástandsins.

(iii) Látum H0 vera ótruflaðan Hamilton-virkja vetnisatómsins. Fyrir hvaða skammta-
tölur getur 〈nℓm|eH0+W |000〉 verið frábrugðið núll?
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(Dæmi 5 frá 2017) Notið fyrsta stigs tímaóháðan truflunarreikning til þess að ákvarða
klofnun á fyrsta örvaða ástandi vetnisatómsins vegna truflunarinnar W = λXY .

(Dæmi 5 frá 2018) Tvívíður einsátta hreintóna sveifill er í fyrsta örvaða ástandi. Sveif-
illinn verður fyrir truflun af völdum mættis W = λX2Y 2. Ákvarðið klofnun þessa ástands
af völdum truflunarinnr í lægstu nálgun í λ.

Lausn: Við byrjum á því að athuga að fyrir tvívíðan einsátta kjörsveifil gildir að orkueigin-
gildi hans eru gefin með

E(nx, ny) = 󰄁ω(nx + ny + 1).

og því er fyrsta örvaða ástandið margfalt ástand |01〉 og |10〉 með orku E
(1)
0 = 2󰄁ω. Okkur nægir

því að reikna eigingildi fyrir fylkið:

Wij =

󰀕
〈01|W |01〉 〈01|W |10〉
〈10|W |01〉 〈10|W |10〉

󰀖
=

󰀕
〈0|X2|0〉 〈1|Y 2|1〉 〈0|X2|1〉 〈1|Y 2|0〉
〈1|X2|0〉 〈0|Y 2|1〉 〈1|X2|1〉 〈0|Y 2|0〉

󰀖

En til þess er gott að rifja upp að

a =
1√
2
(X̂ + iP̂ ), a† =

1√
2
(X̂ − iP̂ ).

En það gefur því að

X =

󰁵
󰄁
mω

X̂ =

󰁵
󰄁

2mω
(a+ a†).

En þar með höfum við að

〈n|X|k〉 =
󰁵

󰄁
2mω

󰁫√
kδn,k−1 +

√
k + 1δn,k+1

󰁬
,

〈n|X2|k〉 = 󰄁
2mω

󰁫󰁳
k(k − 1)δn,k−2 + (2k + 1)δn,k +

󰁳
(k + 1)(k + 2)δn,k+2

󰁬
.

Einu fylkjastökin sem okkur vantar í þessu dæmi eru hinsvegar:

〈0|X2|0〉 = 󰄁
2mω

, 〈0|X2|1〉 = 0, 〈1|X2|0〉 = 0, 〈1|X2|1〉 = 3󰄁
2mω

.

en þar með ályktum við að

Wij =

󰀣
3󰄁2

4m2ω2 0

0 3󰄁2
4m2ω2

󰀤
.

svo það er engin klofnun í orkugildunum eftir fyrsta stigs truflun í λ.

(Dæmi 5 frá 2019) Tvívíður einsátta hreintóna sveifill er í öðru örvaða ástandi, þ.e.
ástandi með orku E2 = 3󰄁ω. Sveifillinn verður fyrir truflun af völdum mættis W =
λX2Y 2. Ákvarðið klofnun E2 af völdum truflunarinnar í lægstu nálgun í λ.
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Lausn: Eins og áður eru orkueigingildin

E(nx, ny) = 󰄁ω(nx + ny + 1).

og því er fyrsta örvaða ástandið margfalt ástand |20〉 , |02〉 og |11〉 með orku E
(2)
0 = 3󰄁ω. Okkur

nægir því að reikna eigingildi fyrir fylkið:

Wij =

󰀳

󰁃
〈20|W |20〉 〈20|W |11〉 〈20|W |02〉
〈11|W |20〉 〈11|W |11〉 〈11|W |02〉
〈02|W |20〉 〈02|W |11〉 〈02|W |02〉

󰀴

󰁄 =

󰀳

󰁅󰁃

5󰄁2
4m2ω2 0 󰄁2

2m2ω2

0 9󰄁2
4m2ω2 0

󰄁2
2m2ω2 0 5󰄁2

4m2ω2

󰀴

󰁆󰁄.

þar sem að við þurftum aukalega á fylkjastökunum

〈2|X2|2〉 = 5󰄁
2mω

, 〈2|X2|0〉 = 〈0|X2|2〉 =
√
2󰄁

2mω
.

að halda frá því í dæminu á undan. En eigingildin á þessu fylki eru gefin með:

λ
3󰄁2

4m2ω2
, λ

7󰄁2

4m2ω2
, λ

9󰄁2

4m2ω2
.

(Dæmi 5 frá 2014) Þrívíður einsátta hreintóna sveifill með tíðni ω verður fyrir truflun

W = λXY 2Z.

(i) Finnið hliðrun á orku grunnástandsins í lægstu nálgun sem ekki er 0.

(ii) Ákvarðið klofnun á orku fyrsta örvaða ástands af völdum V í lægstu nálgun.

Lausn: (i) Okkur nægir að reikna

∆E
(0)
1 = 〈000|W |000〉 = 〈0|X|0〉 〈0|Y 2|0〉 〈0|Z|0〉 = 0.

svo að fyrsta stigs nálgun hverfur. Þurfum því að reikna annars stigs en til þess þarf að reikna

∆E
(0)
2 = λ2

󰁛

k ∕=0

| 〈k|W |0〉|2

E
(0)
0 − E

(k)
0

En því þurfum við að reikna fylkjastökin:

〈nxnynz|W |000〉 = 〈nx|X|0〉 〈ny|Y 2|0〉 〈nz|Z|0〉

en nú er

〈nx|X|0〉 =
󰁵

󰄁
2mω

δnx,1, 〈nz|Z|0〉 =
󰁵

󰄁
2mω

δnz ,1, 〈ny|Y 2|0〉 = 󰄁
2mω

󰁫
δny ,0 +

√
2δny ,2

󰁬
.

sem gefur okkur því að ástöndin sem koma til greina eru |000〉 og |020〉 en það fyrr nefnda er
grunnástandið svo summan er ekki yfir það ástand þar með er

∆E
(0)
2 = −λ2 | 〈020|W |000〉|2

󰄁ω
= −λ2 󰄁3

4m4ω5
.
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